search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Combined, these improvements deliver 10–16% improve- ment in isentropic efficiency in the targeted operating zones compared to its predecessor. The improvement also reduces the power required to drive the supercharger, resulting in ad- ditional fuel economy. TVS2’s integrated high-pressure seals can withstand


extreme pressure environments (up to 4 bar), and its bear- ing assembly enables temporary speeds up to 30,000 rpm. Speeds of this level enable an airflow range 25% higher than current offerings.


The higher speeds and increased boost pressures created noise, vibration and harshness (NVH) challenges. As a result, the TVS2 design includes a new backflow port that reduces noise without impacting air flow or efficiency. Micro-perforat- ed panel technology also enables targeted noise treatment, resulting in a decibel level improvement of up to 8 dB at low speeds. All of these key refinements to TVS2 provide system level benefits and efficiency optimization. Eaton superchargers for the North American market


are built to specifications using a proprietary manufactur- ing process at its Athens, GA, assembly facility. The facility focuses on three core manufacturing competencies—rotor machining, assembly, and end-of-line testing. Eaton’s part- ner companies—Advanced Technology Services, Bruckner Supply Company Inc., and The Tool & Gage House—are responsible for maintenance, indirect materials replenish- ment and metrology, respectively. Highly trained Eaton operators precisely machine and mill the TVS2 rotors, after which an abradable coating is


electrostatically applied and then heat-treated and bonded onto each rotor. The supercharger’s components—includ- ing the rotors, housings, gears, and shafts—are assembled in purpose-designed automation cells fitted with machine vision, servo-processes, and load-measuring technology.


“The process reduced casting procurement time to days versus the standard four-week timing.”


To ensure quality, each supercharger is tagged with a


bar-code so it can be traced to perform manufacturing trending analysis to ensure each unit is built in excess of standard automotive requirements. Once components are assembled, the timing of the rotors must be set. If any gear does not interact seamlessly with another, performance will be compromised. While a machine is used to set the timing, the loading of the machine and the post-timing evaluation are conducted by an Eaton techni- cian. A final performance and NVH test is conducted inside a sound-proof cabinet before shipping. Eaton has delivered eight million superchargers to the mar- ketplace since 1988. The company’s superchargers are in more than 70 OEM applications across multiple markets, including automotive, agricultural and personal watercraft.


Dan Ouwenga is engineering manager, Eaton Engine Air Management, Eaton Vehicle Group North America


Eaton TVS2 supercharger includes a new backflow port that reduces noise without impacting airflow or efficiency.


43 — Motorized Vehicle Manufacturing 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176