search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
overview


systems and electrified powertrains, but there’s also the growth of automated driving assistance systems, or ADAS. A major luxury carmaker with a plant in the United States has a single vehicle model with over 400 trillion buildable combinations, according to Adrian Jennings, vice president of RTLS technology for Ubisense (Denver; London), a speaker on the panel. Another complexity is product timing. The basic vehicle platform can easily last 15 years or more—a car with 200,000 miles on it is no longer a rarity. Yet consumers familiar with other complex products, like cell phones and laptops, are used to ever-shorter product lifecycles and upgrades. New companies in the field are also changing perceptions. “It is common to hear today of Tesla owners saying they are getting a software upgrade overnight,” said Curtis Wilson, vice president of engineering and research for Omron Delta Tau Data systems, another panel member. In the near future it won’t just be software. “There may come an expectation in the very near future where someone may purchase a car with two rows [of seats] and then demand a third row when they have a child, rather than purchase a new car,” he said. Physically changing the configuration of an existing car will be no simple task. It will be impossible if the industry sticks with its current manufacturing model, according to the consensus of the panel. What is needed is “a factory of the future.” What could that be?


From Fixed to Configurable Production Lines “The factory of the future is any factory that breaks the paradigm of the fixed workspace,” Jennings said. The almost universal model of the fixed-workstation, moving production line is over a hundred years old, pioneered by Henry Ford, he said. “These fixed lines exist within a fixed space marked as ‘The Factory.’ With production moving at a set pace in a straight line, there is only so much you can do that is different [to improve it],” he said. Accommodating an expanded palate of choices will require new, possibly, radical thinking. Conveyance is the key, according to Jennings. “You have to break the paradigm of the single line of conveyance, where a car being built enters on one end and does not get off until you get to the other end,” he said. How? While there are any number of ways that could happen, one example is with a production line built around automated guided vehicles, or AGVs.


AGVs, programmed to run autonomously, are the opposite of a single line processing at a fixed rate. Outfitted with some of the same ADAS technology that enables self-driving cars, they need not be confined to a fixed space or fixed routes. “They can be programmed in real time,” he said. With some innate on-board intelligence, including what version of the car is being built—three rows or two, hatchback or sedan—the self-driving AGV could guide itself to the correct station to build the right car.


“AGVs can also go in straight lines at a constant speed—which means they can be integrated into current assembly processes [at low risk],” said Jennings. This kind of line, reconfigurable on the fly and able to accommodate the familiar past as well as the future, could also accommodate product upgrades. “A car needing an upgrade to a third row seat would simply skip the other stations and go directly to the one that it needs,” Jennings said. “We should also think about changing the structure of


robots themselves,” said Ana Djuric, a professor at Wayne State University (Detroit) and a member of the panel. “The one-armed, six-degrees-of-freedom robot is very rigid. We can easily advance into [a factory] with distributed commu- nications, with modular, reconfigurable machines, AGVs, and even drones,” she said.


Information, Culture and Tribes


While self-guiding, autonomous technology is exciting to talk about, it will require a higher level of integration. That is where the existing culture could be a barrier, according to Jennings. “Within a plant there are these very strict stovepipe


organizations, such as between controls and IT,” he said. The controls engineers work in the world of machine controllers, PLCs, and Ethernet IP dedicated to creating products. Information technology, or IT, deals with product lifecycle management tools, and networking with corporate- wide systems. “There are knowledge gaps in these groups that create barriers in communication,” Djuric said. These different worlds—different tribes—have grown up in semi-isolation and getting them to talk to each other will be important. “To me, the hardest thing is going to be the [information] glue that is going to put all of these things together,” said


18 — Motorized Vehicle Manufacturing 2017


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176