search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
laser ablation


test.) Both can be ground or eroded, so laser isn’t the only option, but the earlier methods have limitations. As their name implies, PCD and PCBN cutting tools are made with thousands of tiny crystals held to- gether in a binder, generally cobalt. The toughest grinding wheels (the “superabrasives”) are also made with diamond or PCBN crystals. As you might expect, grinding diamond with diamond is inherently slow and difficult to control. And although the most sophisticated solutions to these problems can produce tools with an extremely good surface fin- ish, grinding can’t produce a per- fectly sharp cutting edge in PCD or PCBN. That’s because the grinding wheel pulls away the PCD/PCBN crystals at the edge, so the edge can’t be any smoother than the grain size of the PCB/PCBN. It’s also virtu- ally impossible to grind the kind of tiny radius that is often desirable on the cutting edge. Erosion can shape PCD and PCBN tools much faster, but pro- duces an inferior surface finish and does no better at the edge. That’s because neither PCD nor PCBN (or the other super-hard materials) are conductive. Erosion uses tiny electrical sparks to burn away material, but it’s the conductive cobalt binder in a PCD/PCBN tool that is being removed, leaving a relatively pitted surface. Thus the surface finish quality is limited to the grain size. By the same token, producing high-quality PCD/PCBN tools with erosion requires fine grain PCD/PCBN.


Laser Cuts Right Through Diamond for a Better Edge and Finish


Laser changes all this. A laser beam can cut PCD and PCBN crystals (not just the binder), creating a sharper edge and a superior finish. Laser can also cut other super- hard materials like CVD-D and MCD that are beyond the capabilities of grinding and erosion. But not just any laser.


LF12 AdvancedManufacturing.org


Á 3D laser ablation is the result of millions of overlapping pulse shots. A laser pulse can be targeted at a spot as small as the wavelength, or between about 500 and 1000 nanometers, and the lasers discussed herein have repetition rates in the hundreds of kHz up to 1 MHz.


As Ronald D. Schaeffer, PhD, of PhotoMachining Inc. (Pelham, NH) explained, there are three key fac- tors to consider in designing a laser for a given application: the wave- length of the light, the repetition rate of the laser pulses, and the duration of each pulse. It turns out that the last factor is the critical determinant in whether or not the laser can cut all the materials in question. Schaeffer said, “In general infrared lasers have a long wavelength and long pulse duration and impart their energy to the material through heat mecha- nisms, making them better for appli- cations like welding. The photons in ultraviolet [UV] light interact with the electronic bonds in most molecules, enabling ablation without heating the material. This makes them bet- ter for micro-machining.” But though UV photons interact quite well with any form of carbon, including dia- mond, UV lasers are too slow to be cost-effective and they can only be used on very thin material. What’s more, the other wavelengths would ordinarily not interact with CVD-D, MCD, or natural diamond at all.


Short Pulses Result in Peak Power Intensity At “normal” pulse lengths (roughly 50 or more nano- seconds per pulse), CVD-D, MCD, and natural diamond are effectively transparent. On the other hand, the phys- ics changes for ultra-short-pulse lasers (i.e., lasers with a pulse duration under about one nanosecond). And the shorter the better, because the peak power for a laser pulse is inversely proportional to the length of the pulse. A nanosecond equals 1 x 10-9 seconds and a picosec- ond equals 1 x 10-12 seconds, so the numbers become a bit mind-boggling. A nanosecond laser with a nominal power rating of 50 watts would deliver kilowatts of en- ergy with each tiny pulse. (The exact wattage would also depend on the pulse frequency and the intensity would vary depending on the size of the focal spot.) Leaving all


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116