search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
I


Lasers in Manufacturing: How and How Much


n preparing for this special section on industrial la- sers we conducted a survey of manufacturers to get an idea of how and where lasers are being used. Our survey sample correlated with what author Geoff


Giordano reported on concerning the types of lasers be- ing used. Slightly more than 33% of our respondents re- plied that they rely on fiber lasers most in their industrial applications. In second place, at 28.6%, were CO2


units,


which Giordano notes are being supplanted by fiber la- sers as the go-to tool for cutting. Diode lasers were the most frequent choice of survey


respondents at 13.1%, while disk lasers were favored by 3.6%. Grouped together under the heading of “Other” were an assortment of lasers, indicating not only the va- riety of lasers available but the range of applications to which they are applied.


“Other” was also the category that received the most


responses (27.7%) when respondents were asked to name the industry they primarily serve. Somewhat more than one in five (20.5%) of those surveyed indicated that they are in the automotive industry, while 16.9% said


sweet spot is somewhere between 200 and 500 fs, and we’re already there. For somebody like me who’s made my living having a building full of lasers that are next-gen- eration that people don’t have, I don’t know what’s next. Maybe it’s that once these fs lasers come down to the $50,000-to-$100,000 level, volume takes over. Instead of high profit on low numbers, we’re going to be building lots of fs systems.” Schaeffer, who specializes in micromanufacturing of complex medical products like stents, explains that while his customers are satisfied with the work he pro- duces with ns lasers, ps or fs lasers could produce bet- ter work—at higher cost. But the narrowing price gap among those lasers will make higher-precision work more affordable. On the diode front, “everyone” is working on the tech- nology said Ryba, who predicted those lasers will begin to supplant fiber and disk in three to five years. “The diode will become the primary laser source for most high-powered cutting and welding applications,” he said. Costs to pro- duce low-brightness diodes are declining, he explained,


they are in the aviation/aerospace industry. Next came heavy equipment manufacturers, at 13.3%, followed by medical manufacturers, accounting for 12.0% of those who responded. Each of the final three choices offered— energy, defense and communications—garnered less than 5% of those who answered the question. The $64,000 Question—how much do respondents spend annually on laser machinery and related equip- ment—may indeed be a $64,000 question, as 57.5% of respondents reported that they spend under $100,000. One quarter of those who answered the question spend between $100,000 and $500,000 per year, one in 10 spend between $500,000 and $1 million and 7.5% spend more than $1 million per year. Far less is spent on laser-related consumables, including lenses, gas, cutting heads and so forth. A slim majority (50.6%) spend under $20,000 per year. Just a shade under 30% spend between $20,000 and $50,000, while 11.1% fall in the 50,000 to $100,000 bracket. About one in 12 (8.6%) spend more than $100,000 for consumables. |||


and using diodes directly instead of to pump fiber or disk devices will further simplify lasers and slightly increase their wall-plug efficiency in a smaller footprint. Ryba said Trumpf will introduce some 1–3- kW diode cutting lasers next year. Meanwhile, the company foresees its “biggest year ever, dollar-wise” for CO2


lasers used to produce


computer chips via EUV lithography; Trumpf is building two facilities in Germany to support the application. One area diode lasers dominate is brazing, said Wolf-


gang Todt, vice present of US operations for Laserline. The company sells largely into the automotive sector for brazing roofs and tailgate decklids. Laserline’s new LDF platform, available at up to 50 kW, is geared to high-speed cladding and deep-penetration welding. “Tests show that spatter is less in [diode] welding of steel-welded blanks … where we clearly outperform disk or fiber lasers,” he said. For a range of applications, diode lasers are “very forgiv- ing, very robust, very easy to integrate and operate and easy to maintain. For job shops and beginners transitioning from TIG or MIG to a laser, it’s one of the easiest transitions they can make without a huge learning curve.”


AdvancedManufacturing.org LF7


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116