search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
overview New Directions


R&D efforts to exploit laser capabilities continue fever- ishly at national, corporate and university labs. At Oak Ridge National Laboratory (ORNL), for instance, Adrian Sabau uses coherent beams from an Nd:YAG laser to simultaneously create complex microstructures on the surfaces of carbon fiber polymer composites and aluminum to optimize their adhesive joining. The unique automated setup “is what you would have on a production line,” Sabau said. The process, ideal for the automotive and aerospace industries, is “ready to go,” Sabau asserted, merely awaiting funding for applications that involve specific geometries and integration into customized workflows. On the additive side, University of Tennessee Profes-


sor Suresh Babu, the UT-ORNL governor’s chair for ad- vanced manufacturing, said that a student of his started an aerospace company, Volunteer Aerospace, after creating aluminum components on a Concept Laser X Line 1000 powder bed printer located at ORNL. That machine is also being used to print the heat exchanger of an additively manufactured excavator as part of ORNL’s push to facili- tate commercialization of large-scale additive manufactur- ing. (The excavator’s polymer cab and metal boom are also being 3D printed at ORNL.) Meanwhile, Trumpf opened a Silicon Valley laboratory for laser applications, micro-applications and coating tech- nology using continuous wave and short and ultra-short pulsed lasers. “This means we can examine each cus- tomer’s individual requirements and ideas on site,” said Peter Leibinger, vice chairman of the managing board of


the Trumpf Group and head of the Laser Technology/Elec- tronics division. “Add to that our many years of experience, and we can identify the optimum process and the right la- ser or generator for each application.”


Concept Laser has contributed two metal AM machines to Arizona State University’s new 15,000 ft2 (1394 m2) research and prototyping facility, which houses $2 million worth of 3D printing equipment on ASU’s Polytechnic campus. At Germany’s Fraunhofer Institute for Laser Technol-


ogy (ILT), a host of applications using ultrashort-pulse la- sers are expected to reach commercial maturity within the


year, including: t Structuring of carbon fiber parts and components to make electrical contact


t Scaling processes with multibeam technology t Micro drilling of filters and screens in the outer skin of aircraft


t Shaped cooling holes in turbine blades Fraunhofer ILT also signed a multiyear deal in January


with French ultrafast laser maker Amplitude Systèmes to de- velop technologies and products in the multi-100 W range.


Industrial laser markets


With four top-tier laser makers—Trumpf, IPG, Coher- ent and China’s Han’s Laser—reporting roughly $1 billion in revenue for the first time in 2016, the growing demand for industrial laser applications is clear. So robust is the industry that investor Brian Feroldi said IPG is a stock he would be unlikely to ever sell in a January article for The Motley Fool.


Ï A laser engineer works with a picosecond laser system at PhotoMachining in Pelham, NH.


LF8 AdvancedManufacturing.org


Photo courtesy PhotoMachining


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116