search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
WHERE ARE WE NOW?


(discovery) has become very much the accepted approach.


“ Microsampling in early development ”


SO WHERE ARE WE TODAY?


Microsampling in early development (discovery) has become very much the accepted approach. Many people have been using blood microsampling or a variety of techniques involving capillaries, other separation techniques and also solid sample matrices. The other separation techniques involve the current version of the microvettes I tested back in the 1990s. The acceptance into regulated workflows has been relatively slow with few of the big pharmaceutical companies really coming to the fore. GSK have worked closely with Drummond Scientific (PA, USA) to develop a novel capillary device and AstraZeneca have worked on their capillary microsampling technique; both have applied these successfully to their regulated toxicology studies.


10


The industry is starting to see many more companies begin to embed microsampling into their preclinical workflows. In the past couple of years, we have seen some real commitment to microsampling by several large companies and also from our regulators. In January 2016, the International Conference for Harmonization released a Q&A documenton microsampling, which importantly discusses the idea of taking safety data measurements from main study animals and generating the toxicokinetic and exposure data in the same animals. There has also been a lot of discussion within the industry ensuring that we generate our safety and toxicokinetic data in the same animals. Microsampling has not only facilitated these discussions but is also enabling our ability to deliver this. The removal of toxicokinetic subgroups from studies is having and will continue to have a significant impact on reducing the number of animals used in research.


Microsampling is now part of many companies’ workflows within the research and laboratory space and is becoming part of our day-to-day language in bioanalysis and clinical development. Microsampling outside of the laboratory is a key development, although here I am not meaning clinical support and the potential benefits of home sampling. Over the last few years at Charles River (Edinburgh, UK) we have been involved with investigating the use of microsampling to develop new opportunities in environmental research. Charles River has used DBS to support studies in quail, partridge and, most recently, the common vole.


With the increased interest in and advantages of microsampling, which have led to a lot of development and investment in new technology, I would like to bring into focus the newest developments to your attention as a look into the future of microsampling.


Volumetric absorptive microsampling (VAMS) is a unique approach to a solid matrix, which


overcomes some of the concerns and issues that have been identified with DBS. The potential of VAMS is very high, particularly in clinical research.


The clinical use of microsampling was really driven during the development of DBS, but


has really lost traction over the past couple of years. However, there is some excellent work in the pediatric space and Hitesh Pandya (University of Leicester, UK) has really shown the advantages of DBS and is now working on the new VAMS device.


www.bioanalysis-zone.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48