search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
53


silicas are significantly less acidic which results in less activity associated with bases, i.e. less tailing.


The amount of tailing will give an indication generated by a base interacting with the acidic silanols, of the degree of acidity associated with the phase.


For some separations the increase in acidity is a beneficial factor as it will increase the amount of separation, and clever separation scientists will be aware of this and use it to their advantage. As a consequence of this it is can be stated that there are no bad stationary phases, just an inappropriate stationary phase selection. Thus a stationary phase which has a high degree of acidity may be ideal for separating certain compounds, where a silica which has reduced acidity is not an appropriate choice.


Peak Tailing factor


The peak shape that the chromatographer observes can have a substantial effect on the overall separation, this is particular the case when looking at impurity or degradation studies, where it is common to have one large solute peak in the presence of several much smaller impurity peaks. For compounds giving a similar response with a specific detector, the amount of separation that is required is less than when there is a substantial difference in the response of the detector for two peaks. Thus a separation that has a good resolution with two equally sized peaks may well not be good enough were one peak is much larger than the other. The peak shape will have a significant effect here, with tailing peaks being the cause of much concern amongst separation scientist looking at impurity studies. Reducing the degree of tailing by limiting the secondary interactions is therefore very beneficial in this case.


Effect of column packing method variability


The packing of the column with the stationary phase is often seen as more of an art form than a true science, surprising after nearly 40 years of commercial column packing, with manufacturers having a range of ‘secret’ recipes that will give them optimum packing performance. In truth there is substantially more research required in this area, in particular looking at a range of effects including;


Hardware, viscosity, temperature, flow, column packing pressure, packing solvents, rheology, particle morphology, particle strength, sonication, centrifugation, frit configuration, particle size distribution to name but a few.


To obtain a highly efficient column it is essential that at least these parameters are considered, however within the field of chromatography this is often seen as not being as exciting as developing new stationary phases, smaller particles, or a range of different morphologies, as this edition of Chromatography Today exemplifies. However, without at least a basic understanding of these fundamental parameters, which will vary dependent on the nature of the substrate and also the stationary phase, even the most exciting new stationary phase morphology development may have limited success. There is a lack of research in this area, which the help desk finds of some concern, in particular given the nature of particle development, which will necessitate the development of optimum packing methodologies to


realise the incredibly high performance that the academics and then ultimately the end-user require. There are some notable exceptions to this and the interested reader is directed towards [1-11]. It should be noted though that the nature of the particle that is being packed will have a significant effect of the performance of the packing process, and this may be one of the biggest challenges that is facing separation scientists in ensuring optimal chromatographic performance as this is very reliant on a somewhat secretive manufacturing industry. The help desk would encourage manufacturers to work closely with academic groups in gaining a better understanding of the packing process, and not being reliant on the use of ‘secret’ packing recipes which will ultimately not perform with the development of novel stationary phases, due to the lack of fundamental knowledge.


Poor packing protocols can result in either peaks that front or tail resulting in poor column efficiency. Very poor protocols will result in fracture of the particles, which results in fines being produced and causes high column back pressures due to the blockage of outlet frits or interstitial spaces between the particles. Fines are very small particles will eventually move to the outlet frit and either result in blocking the frit, or potentially worse actually, if small enough, end up in the detector. Reversing the column and applying flow can remove these fines, however this is not an approach that the Help Desk would recommend. The help desk is aware of some columns that would only ever have an outlet frit (fortunately this is no longer the case), which caused a degree damage when the column was reversed to clear the exit frit, since the column was connected to an expensive mass spectrometer.


Stability of column packing material


It has already been mentioned that the packing material particle has a significant effect on the packing efficiency. One of the aspects that becomes more prevalent as smaller particles are employed in separation science is the compressibility of the particle. Porous particles will not necessarily behave as non- compressible particles under high pressure column packing and there may be a degree of elastic deformation that occurs, which on depressurisation of the column results in the creation of voids. This has been seen most significantly with organic polymers, however the compressibility of the particle can also be used advantageously under the right conditions.


Conclusion


The development of novel particles and stationary phases for separation science is exciting; however, it is essential that there is a consideration of the substrate material and the appropriate packing technology is employed to ensure that the best performance column is obtained. Manufacturers have started to address the purity of the substrate with high purity silicas, but there is still a lack of knowledge with regard to the column packing process. There are a variety of parameters that can be varied, some of which have been highlighted in this article, however it is evident that development of novel stationary phases has to be in conjunction with the development of column packing. Chromatography should be about the separation of Gaussian peaks and invariably this is not the case and better understanding of how to control the substrate and the packing process will go a substantial way to improving the current situation.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60