search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
17


(11) K. Cabrera, D. Lubda, H.M. Eggenweiler, H. Minakuchi, K. Nakanishi, J High Resolut Chromatogr 23 (1) (2000) 93-99


(12) K. Nakanishi, N. Ishizuka, H. Minakuchi, K. Hirao, N. Tanaka, Colloids Surf A Physicochem Eng Asp 187-188 (2001) 273-279


(13) N. Tanaka, H. Nagayama, H. Kobayashi, T. Ikegami, K. Hosoya, N. Ishizuka, H. Minakuchi, K. Nakanishi, K. Cabrera, D. Lubda, J High Resolut Chromatogr 23 (1),(2000) 111-116


(14) K. Cabrera, T. Kupfer, G. Jung, P. Knoell, B. Peters, The Column 10 (22) (2014) 40-43


Figure 4: Stability test of immobilised rSPA silica monolith against 10.000 pH shifts using gammanorm IgG (1 mg/mL) as control for column performance. Chromatographic conditions: Stepwise gradient: 100 mM sodium phosphate pH 7.4/100 mM sodium phosphate pH 2.5; 0.05 min 100/0, 0.05-0.06 min 0/100, 1.10 min 0/100, 1.10-1.15 100/0, 1.15-2.00 min 100/0; flow rate: 2.0 mL/min; detection: 280 nm; injection: 10 µL; temperature: 25°C


(15) J. Spross, A. Sinz, J. Sep. Sci. 34 (2011) 1958-1973


(16) E. Pfaunmiller, M. Paulemond, C. Dupper, D. Hage, Anal. Bioanal. Chem 405 (2013) 2133-2145


A linkage were extensively investigated by more than 5,000 runs including 10,000 pH shifts which was corresponding to more than 53,000 CV applied to the column.


The results of IgG control are shown in Figure 4. Immobilised rSPA silica monolith provided constant analysis of IgG during the complete stability test remaining retention time, peak area and peak width nearly unchanged. The RSD of IgG retention time was smaller than 0.5% whereas for the peak area of eluted IgG the RSD was below 1.1% indicating no loss of binding capacity.


Conclusions


Recombinant protein A was covalently attached to the surface of silica monoliths with larger mesopores suited for biomolecules. The immobilised rSPA column was successfully utilised in the separation of monoclonal antibodies by affinity chromatography. The applied method for immobilisation yielded to a high dynamic binding capacity leading to broad range of applicable antibody concentrations. Furthermore, stability test revealed a strong linkage between silica monolith and rSPA ligand due to the constant analysis of monoclonal antibodies. In conclusion, silica monoliths with bimodal pore structure immobilised with rSPA ligand are ideally suited for the chromatographic separation of monoclonal antibodies.


References


(1) G. Walsh, Biopharmaceuticals: an overview, in: G. Walsh, B. Murphy (Eds.), Biopharmaceuticals: An Industrial Perspektive, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1-34 (1999)


(2) D. Bell, LC GC N Am 34 (4) (2016) 242- 252


(3) S. Fekete, J.L. Veuthey, D. Guillarme, J. Pharm. Biomed. Anal. 69 (2012) 9-27


(4) D. Guillarme, J. Ruta, S. Rudaz, J.-L. Veuthey, Anal. Bioanal. Chem. 397 (3) (2010) 1069-1089


(5) K. Vuignier, S. Fekete, P.-A. Carrupt, J.-L. Veuthey, D. Guillarme, J. Sep. Sci. 36 (2013) 2231-2243


(6) A. Forsgren, J. Sjöquist, J. Immunol 97 (1966) 822-827


(7) O.B. Gorbatiuk, A.O. Bahmachuk, L.V. Dubey, M.O. Usenko, D.M. Irodov, O.V. Okunev, O.M. Kostenko, A.E. Rachkov, V.A. Kordium, Biopolym Cell 31(2) (2015) 115-122


(8) K.K. Unger, N. Tanaka, E. Machtejevas. Monolithic Silicas in Separation Science. Wiley-VCH Verlag GMBH, Weinheim, Germany, 2011


(9) K. Cabrera, LC GC N Am 30 (4) (2012) 30-35


(10) S. Altmaier, K. Cabrera, J. Sep. Sci, 31 (2008) 2551-2559


(17) A. Moser, D. Hage, Bioanalysis 2 (4) (2010) 769-790


(18) M. Michaud, E. Jourdan, A. Villet, A. Ravel, C. Grosset, E. Peyrin, J. Am. Chem. Soc. 125 (28) (2003) 8672-8679


(19) B. Han, C. Zhao, J. Yin, H. Wang, J. Chrom B 903 (2012) 112-117


(20) A. Girelli, E. Mattei, J. Chrom. B 819 (1) (2005) 3-16


(21) D. Lubda, K. Cabrera, K. Nakanishi, W. Lindner, Anal Bioanal Chem 377 (2003) 892-901


(22) E. Calleri, G. Massolini, D. Lubda, C. Temporini, F. Loiodice, G. Caccialanza, J Chrom A 1031 (2004) 93-100


(23) E. Calleri, C. Temporini, E. Perani, C. Stella, S. Rudaz, D. Lubda, G. Mellerio, J.-L. Veuthey, G. Caccialanza, G. Massolini, J Chrom A 1045 (2004) 99-109


(24) C. Temporini, E. Calleri, D. Campèse, K. Cabrera, G. Félix, G. Massolini, J. Sep. Sci. 30 (2007) 3069-3076


(25) R. Mallik, D.S. Hage, J Pharm Biomed Anal 46 (2008) 820-830


(26) M.J. Yoo, D.S. Hage, J. Sep. Sci 32 (2009) 2776-2785


(27) H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, N. Tanaka, Anal. Chem. 68 (1996) 3498-3501


(28) H. Minakuchi, K. Nakanishi, N. Soga, N. Ishizuka, N. Tanaka, J. Chromatogr. 797 (1998) 121-131


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60