search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
13


of silica precursors as well as calcination of porogens at high temperature etc. It is expected that these similar steps in the manufacture of SPP will also lead to the presence of voids within the shell of silica particles.


Conclusions


Due to the unique homogeneous pore structure of SOLAS™ MonoDense™ separations are possible at faster fl ow rates without compromising effi ciency as shown above in van Deemter plots. A slightly higher back pressure is noted for SOLAS™ MonoDense™ particles possibly due to the fact that no large voids or pores exist within the particle. Commercial silica that contain ‘large starburst’ voids show a dramatic increase in the C term.


By comparison, particles that have monodense structure and contain a homogeneous internal pore structure leads to the effi cient transfer of analytes into and out of the silica pore structure, thereby leading to more effi cient and effective chromatography. Additionally, the Glantreo


particles represent a media that is easier to pack with a reduced failure rate in packing.


From FIB-SEM analysis of core shell particles it would seem that this phenomenon also exists with the SPP particle class. This monodensity issue may explain why some particles with remarkably similar physiochemical properties [e.g. surface area, pore size, pore volume particle size and particle size distribution, carbon coverage etc.] may behave so radically different when packed into a chromatographic column.


Acknowledgments


The authors wish to thank Dr Andrew Alpert (PolyLC) & Dr Donal Keane (University College Cork) for useful discussions.


References 1. Hyde et al. Ind Eng Chem Res 2016 8891-8913


2. Iler, R. K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry; Wiley: New York, 1979.


3. Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62–69.


4. Büchel, G.; Grün, M.; Unger, K. K.; Matsumoto, A.; Kazuo, T. Supramol. Sci. 1998, 5 (3–4), 253–259.


5. Keane et al. J Porous Mater (2010) 145-152


6. Kirkland et al. LE.57 Abstract submitted to 40th ISCC_0268


7. Abdallah, N.H., Schlumpberger, M., Gaffney, D.A., Hanrahan, J.P., Tobin, J.M., Magner, E. 2014, 108, 82-88


8. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60 (2), 309–319.


9. Omamogho et al Anal Chem. 2011 1547-1556


Learn state of the art (U)HPLC modelingwith DryLab 4


®


• Optimal method development


• Testing for highest robustness


Intensive DryLab 4 Training for (U)HPLC Method Development


®


20-22 March 2017 25-27 September 2017


NEW: Method Development for Therapeutic Proteins (Biopolymers) Separation


Find out more: www.DryLab.com


19-20 June 2017 11-12 December 2017


• Quality by Design (QbD) • Knowledge management


Berlin, Germany


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60