66
EXPLORING SALINITY New CTD monitoring technology helps reveal Arctic secrets
A group of Arctic researchers has employed the latest monitoring technology to investigate the effects of climate change, by measuring temperature and salinity in the water column beneath surface ice. The results of the investigation, which utilised YSI’s new 'Castaway- CTD', could cast new light on our understanding of the ways in which shifting ocean currents impact upon the climate in northern Europe. The Catlin Arctic Survey is a unique collaboration between scientists and explorers, and the Castaway enabled the researchers to work very quickly in extremely hostile conditions because the device is small, portable and can be operated in the field without the aid of a computer.
Previous research looked at ice thickness and ocean acidification, but the latest Catlin Survey work has studied freshwater currents beneath the ice surface to help understand their effect on bottom-up ice melting, which is disrupting global ocean circulation.
Background
It is well established that the Arctic environment has a significant effect upon the global climate. For many years, climate scientists have raised concerns over future shifts in global weather systems and highlighted the role that the Arctic plays in such systems. Changes in the Arctic heavily contribute to the Thermohaline Circulation; a giant aquatic conveyor connecting the planet's oceans, distributing heat, oxygen and nutrients. Changes to the Thermohaline Circulation combined with vast atmospheric, positive feedback loops (that produce large quantities of methane from the melting permafrost) that occur within the Arctic, can have drastic repercussions on the global climate.
In 2011 the Catlin Arctic Survey was commissioned by The Catlin Group to assess the temporary ice base on the Prince Gustav Adolf Sea, on the northern most fringe of Canada’s Arctic archipelago, around 800 miles from the North Pole.
Organic Matter
A key measurement parameter for the team was Coloured Dissolved Organic Matter (CDOM), because high levels can result in 40% higher light absorption. In the Arctic, much of the CDOM is derived from three of Northern Russia’s vast river mouths. Commenting on the significance of CDOM, Dr Victoria Hill, a British-born Oceanographer, said: “Locally CDOM should act to increase thermal stratification, trapping heat near the surface. The water becomes more stable and there is reduced mixing. However, if surface ice melts, it creates an upper layer of fresh, cold water which does not mix. In the long run, the surface water becomes warmer and no longer sinks to form the deep and colder water that draws the Gulf Stream to Northern Europe.” The researchers anticipated that the Arctic Ocean would be highly transparent, because the rivers contributing CDOM were frozen. However, the team determined that this was not the case. In fact, Dr. Hill revealed: “In the Chukchi, between 70 and 80 percent of solar
radiation was being absorbed by CDOM." In another data set, retrieved by Adrian McCullum, from the Scott Polar Research institute, concerning results were obtained from a sample of the water column; at a depth below 200m, the water was 1 Deg C colder than expected. This significant change in normally stable, deep water, suggests that the surface melt water was sinking, driving warmer water into contact with the surface ice. This sparked further interest into the variation of temperature in the Arctic Ocean.
Arctic Ocean profiling
Highly specialised equipment is necessary for profiling very deep water. However, YSI's Castaway CTD has been developed to provide a simple and accurate method for the rapid determination of conductivity, temperature and depth down to 100 metres. Incorporating GPS, sensors, data logging and a display into one compact instrument, the device is literally cast (or lowered) into water and retrieved immediately. The Castaway automatically collects and computes the data and users are able to see the result of their work immediately on a small display. The investigation in to CDOM’s effect on ocean temperatures was therefore an ideal application for YSI’s Castaway-CTD (conductivity, temperature and depth). A light-weight and easy to use hydrographic profiling instrument, with high-resolution sampling of conductivity, temperature and depth, the Castaway was a vital piece of sampling equipment used by the Catlin Arctic Survey team.
Castaway CTD – user feedback
Ann Daniels, of the Catlin Expedition Team was keen to stress the importance of the CTD to the success of the survey, “It was very lightweight, perfect for a long-range scientific expedition. The LCD display was very useful as it allowed the team to view information from the CTD while in the field, and allowed 'live science' to be relayed back to HQ by phone. It meant there was interest generated during the expedition rather than having to wait till the unit was returned to the UK.”
Easily deployed, the Castaway was cast into bore holes created in the Arctic ice, and allowed to free –fall at depths of up to 100 metres, its sensors gathering data, including a temperature system able to respond within 200 milliseconds. The device was especially well designed for surveys in this extreme environment. A rugged, non-corrosive housing, a flow-through design, AA battery power and tool-free operation meant Castaway was perfectly suited for an Arctic survey. Commenting on the value of the Castaway to the survey team, Science Programme Manager Dr. Tim Cullingford, said: “The Castaway CTD was deployed by the explorer team for the Catlin Arctic Survey 2011 during March to May. The conditions at this time of year in the Arctic are extreme, with temperatures down to -40DegC. Nevertheless, the Castaway was successfully deployed through holes drilled in the ice to an ocean depth of 100 metres. Its compact nature
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156