This page contains a Flash digital edition of a book.
Aerospace Materials


metal mesh currently used in the structure of the composite aircraft to disperse lightning strikes, buckypaper, with its high current-carrying capacity, would allow lightning’s elec- trical charge to flow around the plane and dissipate without causing damage.


Furthermore, buckypaper is flame retardant and could one day help prevent fires on aircraft, ships and other structures. Its strength-to-weight ratio might also prove ideal when mak- ing protective gear, including helmets and body armor, for the military and police, as well as create improved, more comfort- able prosthetics for wounded veterans. Such features explain why the US Air Force and companies including Raytheon and Lockheed Martin have been investing in R&D efforts aimed at getting the material to fulfill its promise. Florida State University’s High-Performance Materials Insti- tute (HPMI; Tallahassee), where C60


co-discoverer and Nobel


Laureate Harold Kroto serves as senior science advisor—is paving the way when it comes to narrowing the gap between research and the practical use of buckypaper. Nobel Laure-


ate Richard Smalley first produced buckypaper during the 1990s by filtering a nanotube suspension in order to prepare samples for various tests. HPMI has spent the past several years building upon this work, making buckypapers larger and more multifunctional for composite fabrication and achieving several patents for its efforts.


Composites Dominate in Aero Materials Research


SGS WELCOMES


SGS METCON/KD ENGINEERING With this addition, SGS is expanding our service offering to move


you two steps forward and another stage ahead with our integrated expertise:


• Metallurgical testing • Process engineering & design • Plant audits & optimization • Process plant upgrades • Procurement & construction supervision


Contact us at 520-579-8315, minerals@sgs.com or www.sgs.com/mining.


SGS IS THE WORLD’S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY


While research on buckypaper continues, other materials also have the aerospace industry’s attention. Titanium, aluminum and high-nickel alloys such as Inconel will continue to hold interest, but the lion’s share of aerospace materials-related R&D is being done with composites, according to George N. Bullen, president and CEO of Smart Blades Inc. (Oxnard, CA). “By far, the largest investment in change to materials, materials baselines, and materials processes has been in composite materials,” Bullen recently told ME. He noted four primary areas where the next stage of incorporation can become cost effective to leverage the advan- tages of composite structures into large aero structures: Elimination of the autoclave for the cure of autoclave-cured materi- als. One method recently demonstrated successfully is In-A-Bag cure or degassing cure. If large composite structures can be cured using high-strength autoclave cure materials, out of the autoclave, then the cost, complexity and limitations of installing and operating an autoclave would be eliminated in the manufacturing process. Another approach is to bond large structures including substruc- tures into a single unified piece of aero-substructure. If bonding together of large skins and a substructure can be achieved that result in the same high-strength properties of a fastened aero-substructure, then significant cost and complexity would be reduced in the manufacturing process. There are currently major efforts to achieve this goal. If large unified structures can be achieved out of the autoclave, then methods and machines need to be and are being developed that can lay down large quantities of time-sensitive materials. When large structures are manufactured using composites, tooling and material handling become challenges, which are being addressed, and will in the near future migrate into the manufacturing process. InSitu inspection, test, and evaluation systems for large compos- ites structures are under development. Small structures currently made by hand are moved to the inspection areas for review after fabrication. As structures grow, they may be beyond the capability of factories to move to inspection machines.


92 ManufacturingEngineeringMedia.com | March 2013


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240