This page contains a Flash digital edition of a book.
Medical Manufacturing


direction every day,” said Donna Bibber, president and CEO of Micro Engineering Solutions (MES; Charlton City, MA), a manufacturer and developer of micro machined and micro molded parts.


Metrology, Part Handling Obstacles As micro components become smaller and more precise,


manufacturers face more difficulties in combining materials, which can be either metal or plastic pieces, to make an assem- bly, Bibber noted. Problems also can arise in measuring and testing sub-micron parts. “Te testing and the metrology is as important as anything,” she added. “You’ve probably heard the saying ‘You can’t make it if you can’t measure it.’ At this level of small, that is even more important.”


Additive Micro Process Combining aspects of 3-D printing and semiconductor


manufacturing techniques, Microfabrica Inc. (Van Nuys, CA) has developed an additive manufacturing process enabling the development of complex, sub-millimeter metal components and subassemblies. MICA Freeform, the company’s proprietary volume production process, can achieve 1 to 2-µm tolerances with 20-µm feature sizes, using a materials palette that includes nickel-cobalt, palladium, rhodium, and copper, covering a broad range of mechanical and electromechanical needs. “One of the most promising manufacturing technologies


as a whole is 3-D printing,” said Eric Miller, CEO of Micro- fabrica. “Today, the majority of 3-D printing is relegated to prototype development. However, with the advent of new processes and materials, production opportunities for 3-D printing are emerging. “Te constant and sometimes relentless drive to miniatur-


ization is pushing conventional micro-machining processes forward, and we see a lot of exciting things going on with laser machining and micro EDM, as they continue to be able to create more complex components and parts at a smaller and smaller scale,” Miller said. “Tat said, most of these subtractive processes struggle in the millimeter and sub-millimeter range, and many struggle with high-volume production.” Te MICA Freeform process combines aspects of both


3-D printing and semiconductor scale manufacturing. It’s an additive manufacturing process, allowing designers to achieve virtually any conceivable geometry, no matter how complex, Miller said. “Wafer-scale manufacturing principles allow us to achieve extreme precision, at the sub-millimeter scale, and leverage these attributes in a volume production process.” Microfabrica’s 40,000 ſt2


(3720-m2


Endoscope measuring 5 mm in diameter by 20-mm long has 18 different metal components working together enabling moving and rotating a needle 360º.


A recent MES project involved making an endoscope


measuring 5 mm in diameter by 20-mm long in which there are 18 different metal components working together, so the endoscope can move and rotate a needle 360º, Bibber recalled. “You can imagine how much of a stack-up tolerance, literally microns, in this instance,” she said. “We can’t always scale up to the tolerance needed from machined parts to molded parts, but we have to plan for scale up from part one in terms of stack-up tolerances.” Another major issue is the trend toward more challenging


part geometries. “Te trends are small features, small parts, and small assemblies,” Bibber said. “Te challenges are mostly in handling, and metrology. Te bulk of the cost of the assem- blies are really in how you handle the components, and how they’re measured.”


42 Medical Manufacturing 2013 ) Van Nuys headquarters


includes its manufacturing fab and the company also has a medical device development office in Santa Clara, CA. “Addi- tive manufacturing in its simplest form is building in layers,” Miller said, “so we’ll take any designer’s 3-D CAD model and put it through our proprietary soſtware called Layerize, which separates the design into layers. Tis prepares the design for our fabrication process. We produce a photomask for each layer and then electrochemically deposit each structural layer until the entire device or component is built up on the wafer. Te last step is to chemically etch away the sacrificial material to resolve the design and release the component from the wafer.” Microfabrica works with industries requiring extreme


precision at a very small scale, Miller said, including aero- space/defense, semiconductor test, and medical devices. “For example, we fabricate a very complex metal composite for a micro-contact application in the semiconductor test industry,” he said, “and we’re working with a very large aerospace/de- fense contractor to develop a fuse for the military. We’re also engaged in developing a micro tissue removal device with a large medical manufacturer.”


Photo courtesy Micro Engineering Solutions


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240