This page contains a Flash digital edition of a book.
TechView Closing the Loop on Catheter Crimp Quality


Tere is nothing quite like supplying a catheter that comes apart during use to focus a manufacturer’s attention on quality, but supplying one that doesn’t work aſter it’s in place comes in a close second. Both of those defects typically are caused by the failure of a crimping process used in catheter manufactur- ing, a process that should be simple but turns out to be anything but. Te crimp attaches a small diam-


eter metal tube to a larger tube that’s attached to the flexible portion of the catheter. If it isn’t perfect the crimp will either come apart when it’s pulled on or it will close off the tube completely rendering the catheter useless. It sounds easy, but consistently crimping a tiny metal tube to one that’s only slightly larger proved to be a monumental chal- lenge for catheter manufacturers. Te traditional process uses a hydraulic


press to produce the crimp, but controlling the amount of force generated precisely enough to ensure consistent quality simply isn’t possible with that technology. Even adding a load cell to the system so the press can be retracted whenever a certain amount of force is generated doesn’t guar- antee a consistent crimp. Tat approach doesn’t take into


account the unavoidable variations in tube size, hardness and springback that also impact crimp quality. What’s really required is a process that controls both the amount of force being applied and the exact position of the crimping tool– simultaneously. Once the parameters of a good crimp are known subsequent operations can be controlled to duplicate the force/position “signature” and essen- tially clone the successful operation.


Te technology employed is called


differential monitoring and it’s based on the concept that every assembly opera- tion has a signature in terms of the forces


tice the differential monitoring system is instructed to accept values that fall between a high and a low limit. Te exact range is determined by the user, based on the criteria they consider to be important to the performance of the assemblies. Nevertheless, within user-defined limits it is possible to produce good assemblies while detecting and rejecting bad ones with near 100% reliability. Te key to making that happen


CAD model of a medical catheter.


and motions required to produce the final product. By monitoring the signa- ture during an assembly operation that produces a good part and then teaching a computer control system to recognize that signature, it is possible to construct a system that produces only parts matching the performance profile of the good part that generated the signature.


Every assembly operation has a signature in terms of the forces and motions required to produce the product.


Any part that does not match the


signature simply is rejected. It doesn’t matter if the difference is caused by tolerance stack-ups, variations in hard- ness or surface finishes, manufacturing imperfections, or anything else. Any variation in any aspect of the operation will produce a differential during as- sembly, and the differential monitoring system will detect it. Of course, no two components or


assemblies are ever identical, so in prac-


in catheter manufacturing is a press that can be controlled with sufficient precision. In practice, that requires a servo-controlled electromechani- cal press equipped with the necessary process sensors and control soſtware. Our company’s efforts to satisfy these requirements can be seen in the Promess Electro-Mechanical Assembly Press (EMAP), which is designed for assembly operations requiring precise control of both force and position. Because it is electromechanical, it can be integrated with a wide variety of sensors to monitor the process and advanced soſtware to make intel- ligent decisions about the operation. Te EMAP provides crimping force repeatable to 0.5%, and external posi- tion transducers monitor the tooling to make sure the crimp is neither too shallow nor too deep. We’ve supplied EMAP-based crimp-


ing stations to perform the catheter crimping operation: To date the result has been a 100% effort test certification for every catheter and the virtual elimi- nation of crimp failures in the field. Considering that “the field” is normally inside a patient’s body, that’s a signifi- cant improvement indeed.


Medical Manufacturing 2013 35 Glenn Nausley


President Promess Inc. Brighton, MI


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240