This page contains a Flash digital edition of a book.
An intelligent CAM can thus make decisions which previously had to be decided by the personnel, resulting in greater levels of automation. Associative machining: With tightly


integrated CAD/CAM systems, any revision to the part designs updates the CAD solid model as well as the CAM file, allowing the CAM system to automatically generate the required new toolpaths, the tool list and, if it is neces- sary, the fixture/clamp modifications as well. Tis results in major time savings for manufacturing companies. Parametric associativity: CAM sys-


tems with parametric associativity (all the relevant parameters are vari- ables) enables users to change the value of each variable, al- lowing adjustment to size at any time aſter the NC program for a part is written. Consequently, it automatically updates the tool- path eliminating the need for NC programmers to redevelop the toolpath every time the geom- etry of the part changes. Consider a spinal device


may also be supplemented by a set of predefined machining features and processes that can be tailored to prefer- ence. Such a system has the ability to recognize the machining features—and by using this data, the soſtware auto- matically retrieves process and cut- ting conditions information from the database for cutting the part in the most effective way. Such pre‐definitions can help manufacturers considerably short- en programming cycles, especially for highly repeated machining processes. Pre-definitions which can be stored can include reusable features and attributes, operation sets, custom and standard


flexibility and a high level of automation resulting in toolpath optimization and virtually automatic CNC programming.


Aiding Customization Capabilities: APIs CAM systems must ideally provide


a suite of Application Programming Interface (API) programs. Ability to adapt to suit industry-specific require- ments is a key characteristic of an intel- ligent CAM system. Te addition of a wide variety of


APIs, including one that helps interpret Product and Manufacturing Informa- tion (PMI) data, will help advanced users to automate a significant portion of their design-to- manufacture life cycle, reduc- ing the drudgery of manual programming. Tis ability to automate can be harnessed fruitfully by the medical de- vices industry. For example, consider


such as vertebrae. Different sizes of the vertebrae need to be developed to suit individual requirements. Te feature of parametric associativity will be quite useful to NC programmers.


Aiding Automation: Knowledge-Based CAM As CAM systems continue to de-


velop, there has been a growing trend towards Knowledge Based Machining (KBM). In a world where faster and economical production are critical, CAM systems that possess the ability to acquire intelligence using KBM can provide a competitive edge to manu- facturers because they offer automation while still retaining control over the machining process. CAM systems that incorporate KBM


typically come with a generalized data- base of standard tools, preprogrammed speeds and feeds and information on standard material characteristics. Tese


Moldmaking operation in CAMWorks.


tooling with feeds and speeds libraries, machine information, postprocessor information, and more.


Automatic Feature Recognition Technology (AFR) In addition to automatically identify-


ing regions to be machined, AFR should be able to suggest toolpaths based on different part geometries and must rec- ognize features regardless of the CAD system used to create them. When dealing with complex part


models, the AFR’s ability to recognize more features in less time can result in major time savings since the time‐con- suming process of manually identifying regions to be machined is eliminated. KBM systems use this information


generated by AFR to create operational plans, select appropriate tools and finally generate toolpaths. Te combination of AFR and KBM provides increased


a master model created for designing and manufacturing a particular medical device where multiple customiza-


tions are required. Template libraries and family tables for various types of the device can be created which can then be categorized. When an order is taken, it will be input into the job order system and then passed to the auto- mated design/programming system. Te automation rendered by the CAD and CAM APIs will create the design, regenerate toolpaths and output G- code, which will then be transferred to the shop floor.


Conclusion Te future of CAM systems holds


great potential. Some of the key im- provements to watch out for are reduced programming times, increased efficiency through greater levels of automation, auto-optimization of toolpaths for faster machining, highly and easily customiz- able KBM databases, consistent and predictable outputs.


Medical Manufacturing 2013 31


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240