This page contains a Flash digital edition of a book.
Laser Cutting


Ytterbium (Yb) doped glass fiber is the media for the fiber la- ser. Te process used to generate the beams from the Nd:YAG and fiber laser is largely responsible for the differences in the properties of the laser beam, primarily related to thermal management. Tose properties are defined in terms of beam quality, average power, and peak power. Beam Quality: Fiber laser is delivered using a fiber-optic


cable. In a fiber-laser system, the focus diameter is indepen- dent of the laser parameters and dependent only on the fiber diameter and the collimator/focus lens combination. Nd:YAG lasers for welding of medical devices, in most ap-


plications, are also delivered to the laser system using a fiber- optic cable. In fact, fiber delivery for pulsed Nd:YAG laser welding is a ‘must have’ and virtually all welding with this type of laser involves fiber delivery. Te reason for this is inher- ent to the laser itself. With a typical pulsed Nd:YAG welding laser, every small change to the laser parameters, required to compensate for flashlamp aging, changes the thermal input to the system which, in turn, changes the beam divergence, producing a different focus diameter. Tis generates different weld diameter and weld penetration. Since the laser output of the fiber-optic cable is divergent,


the output must first be collimated. A lens, called the collimat- ing lens, is used to capture and collimate the laser energy. Te collimated laser beam is then focused onto the workpiece.


Since the beam from the Nd:YAG laser is more di-


vergent that that of the fiber laser as a result of thermal effects, the diameter of the fiber through which the laser beam is delivered is two to three times greater. For the same focal lengths of the collimating and focusing optics, this would mean a two to three times larger focused beam at the workpiece. In the past, pulsed Nd:YAG lasers used relatively large


diameter fibers of 600 or even 1000 µm. Te resulting focused beams were useful for welding but not for cutting. Today’s pulsed Nd:YAG lasers, use smaller fibers, 100 to 300 µm, so are much better for cutting. But they have a disadvantage of low average power and, hence, low cut speed. Average and Peak Power: Te average power of fiber lasers


(to several kW) can be considerably higher than that of pulsed Nd:YAG lasers (hundreds of Watts). As is discussed later, this provides opportunity for new and more cost-effective manu- facturing processes. Te main disadvantage of fiber lasers compared to pulsed


Nd:YAG is lower peak power. High peak power is required for deep penetration (several mm’s) cutting (for piercing), drilling, and welding (for keyhole generation). However, since medical device manufacturing typically involves weld- ing, cutting, and drilling of thin materials, high peak power is not required.


Laser welded feed-through feature in a pacemaker cover. The latest fiber-laser technology provides for increasingly smaller welds which allow designers to reduce size of their devices.


84 Medical Manufacturing 2013


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240