This page contains a Flash digital edition of a book.
| NEUROSCIENCE | ARTICLE


symptoms of the menopause affecting the central nervous system. Some selective oestrogen receptor modulators, such as raloxifene and tamoxifen, are neuroprotective and reduce brain inflammation in a number of experimental models of neurodegeneration. Additionally, tamoxifen and raloxifene counteract cognitive deficits caused by the deprivation of sexual hormones. Rats treated with tamoxifen or raloxifene showed an


increased numerical density of dendritic spines in CA1 pyramidal neurons compared with control. Raloxifene and tamoxifen had also specific effects in the morphology of spines. These findings suggest that tamoxifen and raloxifene may influence the processing of information by hippocampal pyramidal neurons by affecting the number and shape of dendritic spines54


. SERMs trigger neuroprotective mechanisms that


reduce the risk of neural damage and trauma, brain inflammation, neurodegenerative disease and cognitive impairment54


. References


1. Sonntag WE, Lynch CD, Cooney PT, Hutchins PM. Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor 1. Endocrinology 1997; 138(8): 3515–20


2. McClellan KM, Parker KL, Tobet S. Development of the ventromedial nucleus of the hypothalamus. Front Neuroendocrinol 2006; 27(2): 193–209


3. Mattson MP, Duan W, Chan SL et al. Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol Aging 2002; 23: 695–705


4. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011 [Epub ahead of print]


5. De Felice FG. Vieira MN, Meirelles MN, Morozova-Roche LA, Dobson CM, Ferreira ST. Formation of amyloid aggregates from human lysozyme and its disease-associated variants using hydrostatic pressure. FASEB J 2004; 18(10): 1099–101


6. Tanzi RE, Bertram L. Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 2005; 120(4): 545–55


7. Worley J. Alzheimer’s: Fighting Back. USA: University of Kentucky, 1998


8. Yaari R, Corey-Bloom J. Alzheimer’s disease. Semin Neurol 2007; 27(1): 32–41


9. Hara T, Nakamura K, Matsui M et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006; 441(7095): 885–9


10. LaVaute T, Smith S, Cooperman S et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001; 27(2): 209–14


11. Fikerstrand T, H’mida-Ben Brahim D, Johansson S et al. Mutations in ABHD12 cause the neurodegenerative disease PHARC: An inborn error of endocannabinoid metabolism. Am J Hum Genet 2010; 87(3): 410–7


12. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 2009; 7(1): 65–74


13. Meola N, Gennarino VA, Banfi S. microRNAs and genetic diseases. Pathogenetics 2009; 2(1): 7


14. Chaudhuri TK, Paul S.Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J 2006; 273(7): 1331–49


15. Smith A. Nature Reviews Drug Discovery. London: Nature Publishing 2003: 883–909


16. Panidis DK, Matalliotakis IM, Rousso DH, Kourtis AI, Koumantakis EE. The role of estrogen replacement therapy in Alzheimer’s disease. Eur J Obstet Gynecol Reprod Biol 2001; 95(1): 86–91


17. Tan ZS, Seshadri S. Inflammation in the Alzheimer’s disease cascade: culprit or innocent bystander? Alzheimer’s Res Therapy 2010; 2(2):6


18. Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharma Des 2010; 16(25): 2766–78


19. Mattson MP. Volume 7: Interorganellar Signaling in Age-Related Disease. Elsevier: London, 2001


20. Wong DF, Wagner HN Jr, Dannals RF et al. Effects of age on dopamine and serotonin receptors measured by positron tomography in the living human brain. Science 1984; 226(4681): 1393–6


21. Bachman DL, Wolf PA, Linn R et al. Prevalence of dementia and probable senile dementia of the Alzheimer type in the Framingham Study. Neurology 1992; 42(1): 115–9


22. Linn RT, Wolf PA, Bachman DL et al. The ‘preclinical phase’ of probable Alzheimer’s disease. A 13-year prospective study of the Framingham cohort. Arch Neurol 1995; 52(5): 485–90


23. Tang MX, Jacobs D, Stern Y et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348(9025): 429–32


24. Roof RL, Hall ED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J Neurotrauma 2000; 15(5): 367–88


25. Alkayed NJ, Harukuni I, Kimes AS, London ED, Traystman RJ, Hurn PD. Gender-linked brain injury in experimental stroke. Stroke 1998; 29(1): 159–65


26. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disroders by genes, diet and behavior. Physiol Rev 2002; 82(3): 637–72


27. Wu YH, Swaab DF. The human pineal gland and melatonin in aging and Alzheimer’s disease. J Pineal Res 2005; 38(3): 145–52


28. Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2: 15


29. Rodriguez C, Mayo JC, Sainz RM et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 2004; 36(1): 1–9


30. Alvira D, Tajes M, Verdaguer E et al. Inhibition of the cdk5/ p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson’s disease. J Pineal Res 2006; 40(3): 251–8


31. Ono K, Mochizuki H, Ikeda T et al. Effect of melatonin on α-synuclein self-assembly and cytotoxicity. Neurobiol Aging 2011 [Epub ahead of print]


32. Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension 2004; 43(2): 192–7


33. Silva AP, Xapelli S, Grouzmann E, Cavadas C. The putative neuroprotective role of neuropeptide Y in the central nervous system. Curr Drug Targets CNS Neurol Disord 2005; 4(4): 331–47


34. Greenamyre JT. The role of glutamate in neurotransmission and in neurologic disease. Arch Neurol 1986; 43(10): 1058–63


35. Lin X, Taguchi A, Park S et al. Dysregulation of insulin receptor substrate 2 in beta cells and brain causes obesity and diabetes. J Clin Invest 2004; 114(7): 908–16


36. White MF. Insulin signaling in health and disease. Science 2003; 302: 1710–1


37. Bayer-Carter JL, Green PS, Montine TJ et al. Diet Intervention and cerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Arch Neurol 2011; 68(6): 743–52


38. Kehoe PG, Passmore PA. The Renin-Angiotensin System and Antihypertensive Drugs in Alzheimer’s Disease: Current Standing of the Angiotensin Hypothesis? J Alzheimers Dis 2012 [Epub ahead of print]


39. Tan ZS, Beiser A, Vasan RS et al. Thyroid function and the risk of Alzheimer disease: the Framingham Study. Arch Intern Med 2008; 168(14): 1514–20


40. Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA. Is the risk of developing Alzheimer’s disease greater for women than for men? Am J Epidemiol 2001; 153(2): 132–6


41. Alvarez-Pedrerol M, Ribas-Fitó N, Torrent M, Julvez J, Ferrer C, Sunyer J. TSH concentration within the normal range is associated with cognitive function and ADHD symptoms in healthy preschoolers. Clin Endocrinol (Oxf) 2007; 66(6): 890–8


42. Owens EB, Hinshaw SP, Lee SS, Lahey BB. Few girls with childhood attention-deficit/hyperactivity disorder show positive adjustment during adolescence. J Clin Child Adolesc Psychol 2009; 38(1): 132–43


43. Birge SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology 1997; 48(5 Suppl 7): S36–41


44. Martin VT, Behbehani M. Ovarian hormones and migraine headache: understanding mechanisms and pathogenesis--part 2. Headache 2006; 46(3): 365–86


45. Fillit HM. The role of hormone replacement therapy in the prevention of Alzheimer disease. Arch Intern Med 2002; 162(17): 1934–42


46. Zandi PP, Carlson MC, Plassman BL et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 2002; 288(17): 2123–9


47. Ancelin ML, Ritchie K. Lifelong endocrine fluctuations and related cognitive disorders. Curr Pharm Des 2005; 11(32): 4229–52


48. Shumaker SA, Reboussin BA, Espeland MA et al. The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia. Control Clin Trials 1998; 19(6): 604–21


49. Ryan J, Scali J, Carriere I, Ritchie K, Ancelin ML. Hormonal treatment, mild cognitive impairment and Alzheimer’s disease. Int Psychogeriatr 2008; 20(1): 47–56


50. Mennini T, De Paola M, Bigini P et al. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo. Mol med 2006; 12(7–8): 153–60


51. Mahmood A, Goussev A, Lu D et al. Long-Lasting Benefits after Treatment of Traumatic Brain Injury (TBI) in Rats with Combination Therapy of Marrow Stromal Cells (MSCs) and Simvastatin. Journal of Neurotrauma 200;, 25(12): 1441–7


52. Farooqui AA. Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. USA: Springer, 2010


53. Jin W, Wang H, Yan W et al. Disruption of Nrf2 enhances upregulation of nuclear factor-κB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediators Inflamm 2008 [Epub January 2009]


54. Arevalo MA, Santos-Galindo M, Lagunas N, Azcoitia I, Garcia-Segura LM. Selective estrogen receptor modulators as brain therapeutic agents. J Mol Endocrinol 2011; 46(1): R1–9.


prime-journal.com | June 2012 ❚ The ageing


process and the degenerative diseases associated with ageing are not conclusive or required if we continue to observe the body and the potential risk factors.


Conclusions Neurodegenerative diseases are preventable and treatable providing that the deficiencies are found and addressed in a timely manner. It is paramount to address the risk factors associated with these diseases, such as diet, environment, cognitive activity, and exercise. The ageing process and the degenerative diseases associated with ageing are not conclusive or required if we continue to observe the body and the potential risk factors. In many cases genetics plays a key role, but it is possible to treat other contributing factors and minimise, delay or even prevent significant damage to cerebral functions.


 Declaration of interest None


53


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84