This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-02/03 :: February / March 2011


nanotimes News in Brief


Materials // Bi2


Te3 T -based TE Nanocomposites


83


hermoelectric (TE) materials can be used to directly convert between heat and electricity


through the Seebeck effect and Peltier effect. They usually act as solid state refrigerators and heat pumps without moving parts and environmentally harmful fluids.


Bismuth telluride (Bi2Te3 ) based alloys are one of the


most excellent TE materials at room temperature, used commercially for refrigeration and temperature control in fields such as beverage coolers and laser diode coolers. The TE figure of merit (ZT) of com- mercial Bi2


Te3 -based alloys is only about 1.0. To in-


crease the efficiency for widely practical applications, materials with higher ZT are desired to be explored.


Recently, the Division of Functional Materials and Nanodevices in Ningbo Institute of Materials Tech- nology &. Engineering (NIMTE), China, has made a series of progress in nanostructured Bi2


Te3 composites.


By embedding ZnAlO nanopowder with high elec- trical conductivity into matrix, p-type Bi2


Te3 -based


TE nanocomposite was prepared using zone melting method. A peak ZT of 1.33 at 370 K was achieved, mainly due to the remarkably increased electrical conductivity and the simultaneously decreased lattice thermal conductivity caused by the introduction


Ting Zhang, Qiushi Zhang, Jun Jiang, Zhen Xiong, Jianmin Chen, Yulong Zhang, Wei Li, and Gaojie Xu: Enhanced thermoelectric performance in p-type BiSbTe bulk alloy with nanoinclusion of ZnAlO, In: Applied Physics Letters, Vol. 98(2011), Issue 2, January 10, 2011, Article 022104 (3 pages), DOI:10.1063/1.3541654 : http://dx.doi.org/10.1063/1.3541654


-based TE


of ZnAlO nanopowder. Through the post sintering process, ZT value of this Bi2


Te3 could reach up to 1.4.


Temperature dependence of ZT for Bi2Te3-based composites, © NIMTE


-based nanocomposite


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95