This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
11-02/03 :: February / March 2011


nanotimes News in Brief


Hydrogen Storage // Berkeley Lab Scientists Achieve Breakthrough in Nanocomposite for High-Capacity Hydrogen Storage


S


cientists with the U.S. Department of Energy (DOE) Lawrence Berkeley National Laborato-


ry (Berkeley Lab) have designed a new composite material for hydrogen storage consisting of nano- particles of magnesium metal sprinkled through a matrix of polymethyl methacrylate, a polymer rela- ted to Plexiglas. This pliable nanocomposite rapidly absorbs and releases hydrogen at modest tempera- tures without oxidizing the metal after cycling – a major break-through in materials design for hydrogen storage, batteries and fuel cells.


“This work showcases our ability to design composite nanoscale materials that overcome fundamental ther- modynamic and kinetic barriers to realize a materials combination that has been very elusive historically,” says Jeff Urban, Deputy Director of the Inorganic Nanostructures Facility at the Molecular Foundry, a DOE Office of Science nanoscience center and na- tional user facility located at Berkeley Lab. “Moreo- ver, we are able to productively leverage the unique properties of both the polymer and nanoparticle in this new composite material, which may have broad applicability to related problems in other areas of energy research.”


Urban, along with coauthors Ki-Joon Jeon and Chri- stian Kisielowski used the TEAM 0.5 microscope at


57


From left, a scientific team that included Christian Kisiel- owski, Anne Ruminski, Rizia Bardhan and Jeff Urban has achieved a major breakthrough in the development nano- composites for high-capacity hydrogen storage. Team members not shown are Ki-Joon Jeon and Hoi Ri Moon. © Roy Kaltschmidt, Berkeley Lab Public Affairs


the National Center for Electron Microscopy (NCEM) to observe individual magnesium nanocrystals dispersed throughout the polymer. With the high- resolution imaging capabilities of TEAM 0.5, the world’s most powerful electron microscope, the researchers were also able to track defects – atomic vacancies in an otherwise-ordered crystalline fra- mework – providing unprecedented insight into the behavior of hydrogen within this new class of storage materials.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95