This page contains a Flash digital edition of a book.
Cell biology


3D CELL CULTURE developments in technology to improve in vitro analyses


Improved in vitro models are required to aid the identification and assessment of candidate molecules for pharmaceutical development. Conventional cell culture models involve the growth of cells on two-dimensional (2D) substrates. Cells adapt to this synthetic 2D environment, become flattened and behave in an aberrant fashion. There is now significant demand for new three-dimensional (3D) cell culture models which allow cells to grow and adapt to their environment in a manner that more closely represents that experienced by their native counterparts. There are numerous advantages in enabling cells to acquire a natural 3D phenotype, including increased cell proliferation, differentiation and function. This article provides a brief overview of some of the technologies and approaches developed for 3D cell culture.


T


he cost developing a new pharmaceutical product has risen substantially in recent years, especially as the development of a new compound heads toward market and enters expensive animal testing and clinical trials. The losses incurred as a consequence of compound fail- ure during late stage development can amount to multiple millions of dollars or even the collapse of a company, particularly in the biotech sector. There is now an urgent call for more appropriate assays that reduce this risk and enable investigators to make informed strategic decisions to be made ear- lier rather than later. There is also the need to mine new model systems and increase the strike rate at identifying new lead compounds. In general, in vitro studies are largely less expensive, faster and more flexible than regulated in vivo tests. However, rising cost-to-delivery ratios and poor predictive value of existing in vitro tests places great emphasis on the development of more realis- tic models, in particular the improvement of cur- rent cell culture assays.


Drug Discovery World Spring 2011


Demand for 3D cell culture technology Mammalian cell culture enables scientists to inves- tigate cell function, model disease and screen com- pounds and develop new therapeutic approaches. Such technology is employed worldwide in aca- demic institutions and in the healthcare, biotech- nology and pharmaceutical industries. It is predict- ed that the use of these techniques will increase as researchers look for new ways of studying cells in the laboratory. Not only is there the drive to improve the quality of data generated from such assays, there are also external pressures such as improving efficiency and decreasing the cost of the R&D process. In addition, changes to policy and legislation that govern the use of animals in research and the need to reduce animal usage con- sequently impact on the development of alternative in vitro methods. As a result, the cell culture tech- nology has huge market potential and is recognised as a billion dollar industry1.


Conventional cell culture involves the growth of cells on flat 2D substrates which is synthetic and far


67


By Prof Stefan Przyborski


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80