This page contains a Flash digital edition of a book.
Drug Discovery


Enabling the promise of STEM CELLS


The remarkable potential of stem cells to generate several hundred differentiated cell types is driving their use for regenerative medicine and for supporting the traditional drug discovery and development process (Figure 1). However, sustained progress in these areas is dependent on advances in the ability to: grow these cells; direct, and control their differentiation; and produce the quantities needed for clinical trials and therapies in a cGMP (current Good Manufacturing Practices) environment. This article will examine advances taking place on both the lab bench and the pharmaceutical production floor that are helping to bring the promise of stem cells closer to reality.


E


very cell type has its own unique needs when grown in vitro and stem cells are no exception. Stem cells, and in particular human embryonic stem (ES) cells, have earned a reputation for being labour intensive and difficult to grow and control in culture. A number of fac- tors contribute to the labour-intensive upkeep of stem cell cultures: the cells must typically be fed daily; manual rather than enzyme-based passaging is often required; and differentiated colonies may require separation from undifferentiated colonies under a dissection microscope, which can be quite tedious. In addition, this excessive handling can increase the risk of contamination.


Further complicating matters, human ES cells are typically co-cultured with feeder layers of mouse fibroblast cells. Use of feeder layers requires two cell types to be maintained in parallel and introduces mouse proteins into the culture system. Alternatively, stem cell cultures can be grown on extracellular matrix extracts and supplement- ed with conditioned medium from mouse fibrob- last cultures. Although this approach eliminates the need for feeder layers, the system still contains undefined animal proteins, as well as possible contaminants. Inclusion of fetal bovine serum in stem cell media further contributes to an ill-


Drug Discovery World Spring 2011


defined culture system. The use of mouse feeder layers and animal serum are particularly prob- lematic in the culturing of stem cells for possible therapeutic applications.


While significant progress has been made towards more defined culture conditions, develop- ment of animal-free culture systems has lagged. Use of serum replacements has removed some vari- ability associated with fetal bovine serum and has led to human ES cell media that is ‘serum-free’. However, serum replacements still may contain bovine serum albumin.


By Robert Shaw and Dr Jeff Till


Figure 1: Application of stem cells for both therapeutic and drug discovery applications 15


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80