10-04 :: April 2010
nanotimes
News in Brief
49
A one-atom thick sheet of graphene (highlighted in the cir- cular window) on top of a silicon dioxide support proves to be an excellent thermal conductor, according to new research published in the journal Science. Although the interaction with the silicon dioxide suppressed the thermal conductivity of graphene compared to its freestanding form, supported graphene still demonstrated much higher heat conducting capability than silicon and copper nano- structures. This finding combined with graphene‘s superior strength and electron mobility make it a promising candi- date for use in next-generation nano-electronic devices. © University of Texas at Austin, USA
Biology & Material Engineering //
Nanoscale “Stealth” Probe Slides Into Cell Walls Seamlessly
© Louis Bergeron & Aimee Miles, Stanford University
F
or the first time, researchers have created a way
to implant an inorganic device into a cell wall
without damaging it. A nanometer-scale probe de- signed to slip into a cell wall and fuse with it could offer researchers a portal for extended eavesdropping on the inner electrical activity of individual cells.
Everything from signals generated as cells communi- cate with each other to “digestive rumblings” as cells react to medication could be monitored for up to a week, say Stanford University engineers. The key design feature of the probe is that it mimics natural gateways in the cell membrane, said Nick Melosh,
an assistant professor of materials science and engi- neering in whose lab the research was done. With modification, the probe might serve as a conduit for inserting medication into a cell‘s heavily defended interior, he said. It might also provide an improved method of attaching neural prosthetics, such as arti- ficial arms that are controlled by pectoral muscles, or deep brain implants used for treating depression.
The 600-nanometer-long, metal-coated silicon probe has integrated so smoothly into membranes in the laboratory, the researchers have christened it the “stealth” probe.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87