48
nanotimes
News in Brief
Super-thin Material //
With Support, Graphene Still a Superior Thermal Conductor
lege, and France‘s Commission for Atomic Energy
report the super-thin sheet of carbon atoms – taken from the three-dimensional material graphite – can transfer heat more than twice as efficiently as copper thin films and more than 50 times better than thin films of silicon.
A
The research advances the understanding of gra- phene as a promising candidate to draw heat away from “hot spots” that form in the tight knit spaces of devices built at the micro and nano scales. From a theoretical standpoint, the team also developed a new view of how heat flows in graphene.
When suspended, graphene has extremely high thermal conductivity of 3,000 to 5,000 watts per meter per Kelvin. But for practical applications, the chicken-wire like graphene lattice would be attached to a substrate. The team found supported graphene still has thermal conductivity as high as 600 watts per meter per Kelvin near room temperature. That far exceeds the thermal conductivities of copper, appro- ximately 250 watts, and silicon, only 10 watts, thin films currently used in electronic devices.
The loss in heat transfer is the result of graphene‘s in- teraction with the substrate, which interferes with the vibrational waves of graphene atoms as they bump
team of engineers and theoretical physicists from
the University of Texas at Austin, Boston Col-
against the adjacent substrate, according to co-author David Broido, a Boston College Professor of Physics.
The conclusion was drawn with the help of earlier theoretical models about heat transfer within suspen- ded graphene, Broido said. Working with former BC graduate student Lucas Lindsay, now an instructor at Christopher Newport University, and Natalio Mingo of France‘s Commission for Atomic Energy, Broido re-examined the theoretical model devised to ex- plain the performance of suspended graphene.
“As theorists, we‘re much more detached from the device or the engineering side. We‘re more focused on the fundamentals that explain how energy flows through a sheet graphene. We took our existing model for suspended graphene and expanded the theoretical model to describe this interaction that takes place between graphene and the substrate and the influence on the movement of heat through the material and, ultimately, it‘s thermal conductivity.”
Jae Hun Seol, Insun Jo, Arden L. Moore, Lucas Lindsay, Zachary H. Aitken, Michael T. Pettes, Xuesong Li, Zhen Yao, Rui Huang, David Broido, Natalio Mingo, Rodney S. Ruoff, and Li Shi: Two-Dimensional Phonon Transport in Supported Graphene, In: Science, Vol. 328(2010), Issue 5975, April 09, 2010, Pages 213-216, DOI:10.1126/sci- ence.1184014:
http://dx.doi.org/10.1126/science.1184014
10-04 :: April 2010
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87