search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Screening


OPTIMISING PHENOTYPIC SCREENING single-cell analysis versus 3D multicell analysis


In light of the high failure rate of compounds when they are subjected to clinical testing, we are seeing a renaissance in phenotypic screening in drug discovery. However, most phenotypic screening is based on the use of cellular assays and here we debate the advantages and disadvantages of single-cell versus 3D multi-cell analyses.


T


he phenotypic screening of novel drug can- didates determines whether a small molecule (or biologic) exerts the desired


pharmacology, either in vitro (isolated cells, organoids, tissues) or in vivo. This functional approach is ‘unbiased’ given that the molecular tar- get, and therefore molecular mechanism of action (MMOA), is only determined following lead identi- fication and preclinical optimisation. By contrast to phenotypic screening, target-based screening com- mences with a defined MMOA implicated in a spe- cific disease pathology and utilises discrete com- pound libraries designed against this presumed molecular target. In this respect, target-based screen- ing is a ‘biased’ approach. In general, phenotypic screening can identify ‘first-in-class’ compounds against novel targets, while target-based screening is optimal to identify ‘best-in-class’ compounds.


Drug Discovery World Fall 2019 Despite the historical success of phenotypic


screening techniques, target-based screening (often directly measuring the biochemical affinity between chemical compound and the biological target) has predominated compound screening campaigns. This is due to the efficiency of highly-automated and ultra-high throughput biochemical assay systems. By contrast, phenotypic approaches are compara- tively inefficient given the high costs per sample and the low throughput assays frequently employed. Consequently, the approach is usually incompatible with the screening of large compound libraries. This is perhaps ironic, given that unbiased screening (eg phenotypic screening) should arguably be conducted against the broadest compound chemical library possible, with the goal of gaining the broadest range of lead chemical structures. A common feature of both target-based and


By Dr Richard M. Eglen


37


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68