search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Test & Measurement


Spectrum’s Arbitrary Waveform Generator precise enough for


quantum research


Precision is always important in research and there can be few research areas needing greater precision than that of quantum research. The Institute for Quantum Optics and Quantum Information at the University of Innsbruck, Austria needed an Arbitrary Waveform Generator (AWG) to generate a wide variety of signals for their research. Spectrum Instrumentation tell us more


T


he Institute for Quantum Optics and Quantum Information at the University of Innsbruck, Austria has chosen a Spectrum Arbitrary Waveform Generator (AWG) to generate a wide variety of signals for their research. Because of the variety of experiments that it would be used for, it was important to have an AWG that is easy to program using a PC so that the output could be easily customised to each use. A Spectrum Instrumentation M4i.6631-x8 was selected


because, being on a PCI Express card, it could be incorporated into the PC and directly driven by it.


“It is highly configurable,” Christine


Maier, a researcher at the Institute, explained. “Two AWG channels, a choice of trigger options, external clock inputs, multiple and gated replay modes, looping functions, and even the possibility to combine two trigger inputs via logic gates. This combined with the high resolution and a sampling rate of 1.25 GS/s made it


the logical choice to provide the flexibility for the projects that we have now and, importantly, whatever needs we may have in the future with just one instrument.” The first application is applying a multiple-frequency signal in the radio frequency regime. Each frequency component is realised using a sinusoidal function. The resulting beat signal is used to simultaneously address individual ions in a trapped-ion quantum simulator. Christine Maier added: “We are doing the quantum simulation with trapped, cooled calcium ions and need to address each individual ion in a linear string. To achieve this, we send a laser beam through an acousto-optic deflector (AOD). The frequency of the radio frequency signal defines the deflection angle of the laser beam and thus which ion is addressed. The AWG allows us to produce multiple- frequency signals so that we can now address multiple ions in the string simultaneously. One advantage of this is that the experiment is faster because we don't need to cycle through addressing each ion individually. But it also opens up an entirely new field of study for us as, up to now, we could only investigate unperturbed energy transport in our ion chain. However, by addressing individual


46 October 2017 Components in Electronics


ions with arbitrary strength, we now can create arbitrary potential barriers and study energy transport in disordered quantum systems. The AWG even allows us to program time-varying potentials to study dynamic disorder phenomena.” The second application is the cancellation, via destructive interference, of undesired frequency mixing terms that arise, for example, when applying multiple- frequency signals to an acousto-optic modulator. “Applying RF signals to acousto-optic crystals is a basic technique in our laboratories,” she said. “When applying multiple-frequency signals, several sum- and difference-frequency components will arise and finally map onto the optical signal that you are sending onto the ions. This brings two problems. First, you lose power from the frequency components that you actually want and second, the mixing terms could hit some resonance frequencies of the ion chain and destroy the quantum model that you want to simulate. The AWG enables us to cancel these undesired terms via destructive interference in real-time measurement and feedback loops.”


www.spectrum- instrumentation.com


www.cieonline.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60