Test & measurement
INNOVATION DRIVES DATACENTRE SUSTAINABILITY
A novel sensor system has been developed to help datacentres optimise the energy efficiency and sustainability of their operations. In the following article, Anu Kätkä from the measurement technology company Vaisala describes the development of a modular daisy-chain temperature/ humidity sensor configuration, which has dramatically reduced cabling requirements and lowered the carbon footprint of building management systems (BMS).
servers are more energy efficient and able to operate at higher temperatures. As major consumers of power and land, data centre operators have an undeniable responsibility to aggressively reduce emissions and lessen environmental impacts wherever possible. In addition, datacentres frequently contain critically important data, and it is not uncommon for 99.999 per cent uptime to be a requirement. The monitoring and control requirements are therefore comprehen- sive and stringent.
T 24
PARTNERS IN INNOVATION Vantage Data Centers powers, cools, protects and connects the technology of the world’s well-known hyperscalers, cloud providers and large enterprises. Developing and operating across five continents in North America, EMEA and Asia Pacific, Vantage has evolved data centre design in innovative ways to deliver dramatic gains in reliability, efficiency and sustainability in flexible environments that can scale as quickly as the market demands.
Vaisala’s development project was initially prompted by the sustainability requirements of the new Vantage campuses. “We are constantly looking for ways to improve both the efficiency and sustaina- bility of our datacentres,” explains Eugenio Lukianov, principal automation manager, EMEA, Vantage Data Cenres. “Due to their accuracy and reliability, Vaisala sensors are frequently specified in the requirements of our new or refurbished datacentres worldwide.
he global demand for datacentres is being driven by cloud-based services, AI, automation and digitisation. These data handling facilities house large amounts of IT infrastructure and require high levels of power to run the equip- ment and to cool it. The latest
Many of our facilities are large, and the sensor cabling requirement can be enormous, so we were keen to find a better solution,” he adds.
Engineers from Vaisala and Vantage found that the amount of cabling required at datacentres could be significantly reduced if the sensors could be re-designed to be daisy-chained, rather than each having their own individual cable. A sensor development project therefore progressed with
this as its key objective, but additional benefits were also realised by the new sensor solution. “In order to facilitate the daisy-chain, it was necessary for the sensors to be ‘plug and play’ which made installation so much easier,” Lukianov says. “The sensor cables are initially coiled in the roof space, and then, once the servers are installed, the sensors are simply dropped into place. This modular approach also simplifies ongoing maintenance because any damaged sensors or cables can be quickly and easily swapped out.”
The cable reduction potential of the daisy-chain solution is very significant. For example, a single 100m datacentre aisle, with 30 instruments at 3m spacing, each with a dedicated cable and a 3m cable drop would require about 1695 metres of cable, which is more than a mile of cable! In contrast, if the same aisle is equipped with the daisy-chain solution,
November 2024 Instrumentation Monthly
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96