Special report 21kg
The amount of CO2 produced for every barrel of North Sea oil produced by UK operations. Rystad Energy
Battery matters
“First of all, we should be aware that oil and gas assets don't require a huge demand of power – we are talking about 50–100MW,” says Diogo Costa, sales lead, Offshore Wind, at ABB. “This could be perfectly combined with offshore wind power generation, where this 100% renewable power could be combined with battery energy storage – so that when you don’t have power coming from the wind farm, you can manage the asset with power from earlier.” Of course, battery energy storage presents its own challenges. To implement such a solution at scale, particularly when looking to connect offshore wind power back into the main energy grid, would require a considerable amount of storage – which would be both quite costly and also tie up much-needed critical minerals. With that in mind, ABB is also involved in the Deep Purple project, which looks to combine offshore wind power with an alternative to battery energy storage – providing the automation, power, telecommunication and measurement systems for the pilot project in Kongsberg, Norway.
“This is a fantastic project, led by our colleagues in
Norway, who worked on the very early phases of this approach,” says Costa. “We provided [Deep Purple] consultation using ABB’s Process Power Simulation (PPSim) software – a simulation programme – which we used to simulate all the conditions and scenarios for the project. We also worked on the early phase of the perceptual design to help mitigate any risk associated with the electrical management system.”
“We have around 8,000 engineers around the world supporting energy industries and staying closely connected across our five hubs, sharing information and expertise amongst our colleagues.”
Diogo Costa
Deep Purple hopes to offer stable power to off-grid consumers like offshore installations and remote islands, storing and re-electrifying hydrogen so that it essentially functions as a high-capacity battery. The pilot opened at TechnipFMC’s Norwegian headquarters on 12 January, though its initial concept stems back to The Research Council of Norway’s Idea Lab in 2016.
The project makes use of excess wind power to split water into hydrogen and oxygen by electrolysis during periods of high winds, Wynne explains. Reverse osmosis is used to convert seawater into the fresh water needed for the electrolysis process. The hydrogen is then stored under pressure down at the seabed. “In low winds [where wind energy cannot satisfy demand], the hydrogen is then used as the
36
main power source on the platform,” Wynne adds, with fuel cells converting it back into electricity. The pilot project, he notes, will examine how effective this whole system is, and how much backup generation will be called upon. “Getting to zero would be perfect – that’s the aim – but how close to zero will we get?” he says. “The point is to remain 100% clean, providing there’s sufficient power from both the over-generation battery process and release of energy from the battery. It’s really about getting that balance – to maximise the process and remove [the need for] any final backup or support, whether it be connection to shore or a generational asset.” Similarly, the small-scale pilot will help to model cost the technology as well, Wynne adds, noting that if the project is successful, it will remove the main issues facing those looking to use offshore wind to power offshore platforms. “It’s kind of an ideal solution for offshore oil and gas and is certainly the method that we've been working most closely with.”
Optimise the options
After its work with the Deep Purple project, ABB is looking to take its experience from that process and bring its solutions to the UK market to help its customers optimise solutions for their offshore oil and gas assets. One of ABB’s strongest advantages that it’s put into practice “not just for the Deep Purple but with multiple projects,” Wynne explains, “[is that] we have a good study group. We’re able to engage early on, looking at what the optimal solution might be – and that’s agnostic to ABB technology. It’s not about looking at what the best ABB technology and processes are, it’s about looking at what’s best for the overall process – what's the best model for your specific project.”
Costa agrees, adding, “We have around 8,000 engineers around the world supporting energy industries and staying closely connected across our five hubs, sharing information and expertise amongst our colleagues. Furthermore, collaboration with all divisions across ABB is vital, with around 105,000 people in total worldwide.”
Such an outlook is invaluable, particularly as there is no one-size-fits-all solution for offshore oil and gas operations, as we’ve seen. Even beyond the use of power from shore or renewables, ABB is also looking into the many uses of subsea power, carbon capture systems and more, all which come with different benefits and challenges. However, what is true across the board is that if we’re to continue to make use of fossil fuels in the global energy mix, then more work still needs to be done to reduce their environmental impact and the emissions they release. Electrifying offshore oil and gas platforms is just one step out of many that must be taken, but that doesn’t make it any less important. ●
World Wind Technology /
www.worldwind-technology.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45