search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Operations & maintenance


Right: With the constant spinning of their blades, all turbines inevitably suffer damage over time and require repairs and maintenance.


Previous page: Aerones has developed a robot that can provide leading- edge maintenance five times faster than human technicians can.


alternative. With this methodology giving functionality, speed and – what could be seen as Aerones’ secret weapon – modularity, the company pivoted at the start of 2019.


Unveiled in early January 2023, Aerones’ latest modular robot uses this same winch system. With four separate ropes attaching the bug-like robot to a wind turbine, it is able to carry out maintenance and repairs on blades, including from level one up to level three leading-edge erosion. Controlled by a technician on the ground, this robot also collects data on the turbine, feeding it back while carrying out the job. Its modular nature allows it to carry out a multitude of complex jobs needed in a repair scenario and prepares it for the projected growth of wind energy.


According to the International Energy Agency (IEA), the wind industry is set to grow ten times as large in the next 30 years. As this happens, the issues and challenges will only grow with them. “The primary method of repairing wind turbines we currently have is human,” Kruze says, referring to rope technicians. “There aren’t enough technicians to service the growing number of turbines, they take a great deal of time to train and they can only work from May to September due to the weather.”


$15bn


The cost of global onshore wind operations and maintenance in 2019.


Wood Mackenzie Power & Renewables


32


Rope technicians, on average, take around three years to train. Aerones robot operators? Only two weeks. Kruze jokes that anyone who “has played PlayStation”, could become fairly adept at operating the robot within a few hours. This signals a major improvement to the safety of technicians too, with the robot able to work at higher wind speeds and adverse weather. Jobs are carried out 20–40% faster, with the robot needing only a fraction of the downtime required for an all-human repair job.


But the real differences come when looking closer at the repair process. Standardisation is a major issue in wind energy repair. Kruze contrasts the process with


that of building a house, where each stage is subject to quality control, with a manager overseeing the operation generally. “In the wind industry, the person hanging in the ropes does the job, checks it, maybe takes some pictures, does their best to mix the filler correctly, all while suspended in mid-air.” This can, however, lead to inconsistencies and conveys the fairly unkempt nature of wind turbine repair. When using the robot, each of these steps – usually hindered by natural human imprecision – is perfected within the minutest of measurements, with the operator there to assess the job when required. With this accuracy, a standard can be refined and a useful uniformity implemented.


Sharpening the leading edge Leading-edge erosion is the arch enemy of the wind industry. The constant spinning of turbines inevitably results in damage, from the slight scuffing of the blades at level one to the complete stripping of the protective coating that has taken place by level five. But what can be done to help minimise the effects of leading-edge erosion? Kruze points out that the damage leading- edge erosion does to energy production is evident way before it becomes explicitly visible. “As the elements take a toll on the blade’s surface, it is not cutting the air as smoothly anymore – this means that the efficiency of the turbine is going down,” he explains. The current situation, Dainis says, is that wind energy companies “wait for level five erosion to repair because they don’t have enough people to treat the problem properly”, ultimately hampering energy output. If this sounds inefficient, just think what will happen as turbines get larger, the cracks and scuffs growing with them. Though Aerones’ robot is not able to tackle the more extreme levels of erosion yet, its implementation at the latter stages of repair saves time and money, and delivers a more thorough job, as previously mentioned.


World Wind Technology / www.worldwind-technology.com


Aerones


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45