search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Special report


there are still unresolved challenges around renewables. For wind power, its main issue is that it’s intermittent and varying by its very nature, and would rely on immense battery storage to meet demand during still periods. Solar has similar issues – as the amount of sunlight varies from day to day, so too will energy production.


Until battery technology is developed to a point where it can meet the challenge caused by full reliance on renewables – and that development is currently making progress day by day – even the most optimistic forecasts see a need for hydrocarbons in the foreseeable future. It’s important, then, that fossil fuel production and consumption is handled in a way that seeks to minimise its carbon footprint as much as possible.


Electrifying oil and gas platforms Minimising the emissions of existing oil and gas infrastructure is an important milestone in the world’s journey towards net zero, notes Simon Wynne, head of energy industries UK and Ireland at ABB. “Decarbonising offshore production [of oil and gas] is crucial – particularly for the UK, but globally as well,” he says. “When you look at offshore oil and gas, two thirds of the CO2


impact is from power


generation to run the assets – so it’s clearly the target to focus on and go after given that need for hydrocarbons within our energy supply and fuel supply for quite some time.”


ABB is working to help electrify oil and gas platforms in the North Sea, accelerating the decarbonisation process and thereby curbing the impacts of climate change – also a vital component for the oil and gas industry’s North Sea Transmission Deal emissions reduction targets. Today, most offshore oil and gas installations in the North Sea produce their own electricity using gas turbines, which equate to approximately 21kg of CO2


barrel produced for UK operations, according to Rystad, and make up about a quarter of Norway’s total emissions of both NOX and CO2


.


“ABB’s role is really around electrification, automation and, more and more so, digitalisation as well – the use of data in controlling and optimising systems,” Wynne explains. The main challenge when electrifying offshore oil and gas platforms is to be able to manage and control power sources, which requires specific skills and expertise to ensure that the power system reliability and integrity is maintained. ABB has considerable experience in deploying electrical and control systems for offshore oil and gas operations, making it perfectly positioned to support the electrification of these assets. Electrifying oil and gas platforms involves replacing the gas turbines’ energy supply with either power from shore, subsea power platforms or renewable energy like offshore wind. ABB has been active in


World Wind Technology / www.worldwind-technology.com


developing and delivering connection to shore for the best part of 20 years, with one of the company’s earliest projects being the Troll A platform – the world’s largest offshore gas platform, located off the coast of Norway.


Onshore electricity has a number of advantages over offshore generation. 96% of Norway’s electricity comes from renewable sources, enabling Troll to run as a low-carbon operation. A power-from-shore system has a higher level of efficiency and reliability, with fewer moving parts requiring service. Moving away from gas turbine generation offshore means more gas available for sale and frees up valuable space on the platform.


“Power from shore benefits from stability,”


Wynne explains. “You can completely remove diesel generation from the offshore asset, but on the downside, it’s dependent on the rest of the infrastructure that’s providing that power.” While Norway’s electricity may be mostly renewable, other nations haven’t hit that milestone just yet – and there’s only so much you can reduce a platform’s carbon footprint when its running on fossil-fuel- generated electricity.


While the UK lags some ways behind Norway in terms of its power-from-shore capabilities, it leads the way when it comes to offshore wind integration into the national electricity grid, which provides considerable benefits when looking to connect offshore wind to power the operations of an oil and gas platform.


for every


“If you flip the connection to offshore wind [compared with power from shore], the pros and cons are really turned on their head,” Wynne says. “In terms of stability, it’s obviously variable power – so the capability to fully decommission or fully replace diesel or other fuel generation at platform is not there yet.” However, the benefits of offshore wind integration is that the power source is much closer to the oil and gas platform, and the offshore wind connection can be redeployed into the main grid system or an offshore micro grid after the end of the useful life of any offshore asset. Back in Norway, ABBs work on the upcoming Hywind Tampen wind farm serves as a case in point. The turbines will produce 88MW of clean energy, making it the world’s first floating wind platform to power offshore oil and gas platforms in the Snorre & Gullfaks Oil field. The integration of offshore wind power, backed up by flexible onboard gas supply, will reduce power consumption by 35% and is expected to reduce CO2 per annum.


emissions from the field by 200,000t


ABB is delivering control, safety and power management systems to the project, the latter of which will control the power generation from the wind farms so they can be connected to the oil and gas operations.


35 32.4%


The percentage of the UK’s electricity generation made up by wind power in the first quarter of 2023. Imperial College London


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45