search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Biomaterials


efforts to create reliable, safe and effective resorbable polymer implants, with insight from Associate Professor Reece Oosterbeek, engineering science at the University of Oxford, and Professor Paul Hatton from the University of Sheffield’s School of Clinical Dentistry.


Built to disappear I


f you were unlucky enough to suffer a fracture, your clinician might use an implant – like a screw, pin or plate – to hold the bone in place until it heals. Most of the time, these implants are made from metals, such as stainless steel and titanium alloys. There’s plenty to like about using metals: they’re strong and hardy, and have been shown to successfully integrate with the surrounding tissue. But they also have disadvantages. For one, there’s a possibility that the implant will eventually need to be removed. This calls for another surgical procedure, introducing a new risk of complications and injury. Metal implants can also contribute to stress shielding,


where the implant bears load that the bone would normally manage. This can lead to bone loss. Instead, you could use resorbable polymer implants. These degrade as the tissue heals, so they don’t need to be taken out. While modern resorbable polymer fixation devices have seen development and use since the 1960s, the concept of resorbable medical materials, such as absorbable sutures, dates back much further. Efforts to create diverse resorbable implants have been ongoing for decades, with varying degrees of success. Yet from screws to stents to tissue regeneration, the potential of these implants is immense.


Custom-tuned polyesters, including PLA, PGA and PLGA copolymers, are being used to form scaffolds and temporary implants that match native tissue mechanics and degrade inside the body, eliminating the need for explant surgery. Monica Karpinski investigates


96


www.medicaldevice-developments.com


www.medicaldevice-developments.com


ChooChin/Shutterstock.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130