search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SVPanteon/Shutterstock.com


Filtration & fluid control Modelling the flow


Developing medical devices that rely on fluid dynamics can be complex, time-consuming and expensive because of the number of variables involved. An alternative is to use computer modelling, particularly in the early stages of a project as this can reduce the time and cost involved. This comes with challenges, however. Kim Thomas speaks to postdoctoral researcher Connor Verheyen on how he and his colleagues used computational modelling to design granular hydrogels that can be injected into the body to repair tissues.


A


s a PhD student at the Harvard-MIT programme in health sciences and technology, Connor Verheyen was part of a team working on granular hydrogels. These gel- like materials can be injected into the body to heal injured tissues or even to manufacture new tissues. The team was led by Jennifer Lewis, the Hansjörg Wyss professor of biologically inspired engineering at Harvard University, and also included Ellen Roche, an associate professor of mechanical engineering and a member of the Institute for Medical Engineering and Science at MIT. Granular hydrogels are formed by densely packing microgels – tiny building blocks or ‘bioblocks’ that can fit together like Lego. “It’s an inherently modular system where you can imagine plugging and playing different building blocks to get these macroscale ensemble materials that have different properties in terms of mechanics, chemical ingredients and so on,” Verheyen, now a postdoctoral


researcher, explains. “The fact that you’ve got all these squishy Lego materials to play with makes it really interesting to think about how you can mix and match these different populations to arrive at a formulation that will do exactly what you want it to do in the body.” As well as modularity, granular hydrogels have another very useful feature. “Compared to these bulk continuous hydrogels they’ve used previously, the fact that they are made up of all these little building blocks means that when you compact them, depending on how tightly you compact them, you can have this really nice, intricately connected pore structure,” says Verheyen. This porosity enables cells and blood vessels a way to access and fill out the scaffolding.


Self-healing properties


Granular hydrogels can act as either a solid or a liquid, meaning it’s possible to create formulations where the hydrogel remains stable in a syringe, but when it’s time


Medical Device Developments / www.nsmedicaldevices.com


85


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146