the rotating lug of the twistlock engages, locking the containers together. In addition, the bottom two layers of the stacked containers are connected to the ship with lashing rods. Initially, it was common practice to stow stacks of containers on deck in such a way that the individual stacks were connected to each other laterally using special stowage equipment. In contrast to this, nowadays each stack stands separately so that it can be stowed or unloaded independently of neighboring stacks. A ship carrying containers on deck thus transports a kind of “forest” of independent towers which, in heavy seas, sway back and forth due to the elasticity of the material in much the same way as the ears of corn in a field.
The lashing rods are arranged crosswise in front of and behind each container stack and absorb lateral movements of the stack. Depending on the intended height of the container stacks on deck and their permitted weight, the 5th layer of the stacks are, for example, secured at the bottom by the rods. To allow these rods to be attached, ships have what are known as lashing bridges running across the ship between the rows of containers. The workers can stand on these to work and fasten the rods.
The lashing systems are calculated individually for each ship by specialist companies and are inspected and approved by the classification societies. The results of these calculations are recorded in a Cargo Securing Manual approved by the flag state and in which all details can be found. The weight of the containers is of crucial importance, because the higher a container is in a stack of containers on deck, the less it may weigh.
You can think of this in terms of the weights on a seesaw. On one side of the seesaw is the securing capacity of the lashing system, consisting of twistlocks, lashing rods and turnbuckles, and on the other side there is the weight of the
containers. With this seesaw, the side on which the container weight is sitting must always be up in the air. In other words, the securing system must provide more securing force in an emergency than the containers and their weight require. If containers weighing 28 tonnes are located in the 8th layer, where only containers weighing 5 tonnes are actually permitted, the securing balance of the “seesaw” is massively impacted and the securing capacity is hanging in the air. Applied to the securing system on board, this means that it would be loaded beyond its calculated limits in heavy seas and would fail. The result is that the container stack would sway back and forth in the swell and would lean against the neighboring container stacks. This would in turn overload their securing systems, which already have their hands full holding their own container stacks, and they would therefore also fail. The obvious consequence is a domino effect, such as the one seen recently on the the MSC Zoe.
However, the securing balance on our seesaw can also be disrupted by the cargo in the container itself. This is because the securing systems on board ships are calculated on the assumption that the dynamic behavior of the cargo is neutral. Static masses are assumed for the containers, and it is assumed that this mass always acts at the same point in the container. If a cargo weighing 30 tonnes is inadequately secured in a container, it will break loose in a rough sea and bang from side to side in the container. This violent sideways motion has the same effect on our securing system as a wrecking ball on a house. If the bad weather lasts long enough and the ship’s movements are violent enough, the securing system will fail and cause a domino effect similar to that described above.
The extent to which a ship rolls in the swell will also depend on its stability. The stability referred to here is the ability of a ship to right itself after an external force is applied, for instance as a result
The Report • June 2019 • Issue 88 | 53
“
If a cargo weighing 30 tonnes is inadequately secured in a container, it will break loose in a rough sea and bang from side to side in the container. This violent sideways motion has the same effect on our securing system as a wrecking ball on a house.
”
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84