search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
drain TRADER


Age of Data driven Leak Management Dawns


W


ater scarcity and regulatory pressure are leading to more remote monitoring of


leakage, says Alan Cunningham, technical director, Ovarro, and technological advances and human resource challenges mean that might be about to accelerate.


Global water resources are finite and stretched and the application of advanced leakage management technologies is one way to ensure supply and demand balances are met. Various drivers mean interest in the application of real-time data analysis has quickly gone from it being ‘quite a nice idea’ to ‘we need to do this, we need to do it now’.


In the UK, the drivers are mainly regulatory, with strenuous leakage targets imposed on water companies in England and Wales to help close the gap. There are also challenging targets to bring down the duration of customer supply interruptions.


In Australia and parts of the US, leakage management is driven more by drought and availability of water. Utilities and municipalities are doing much more leakage reduction as part of a range of measures required to manage demand, including water restrictions and efficiency measures.


Water availability


There are many cities where water availability is constrained and leakage management and improved visibility and management of the network is necessary to keep taps running. In 2018


Cape Town nearly hit day zero when residents experienced such a severe drought that there was justifiable concern that the taps would run dry.


Through a combination of very extreme water restrictions, a lot of focus on managing the water network and a bit of luck with the rain arriving just in time, Cape Town eventually managed to keep the network running. Moreover, there is a clear economic argument for reducing leakage where the cost of producing water outweighs the cost of finding leaks.


The good news is the increased availability and falling cost of real-time leak detection technology. As digital solutions become more readily available, that makes them more affordable for a wider range of situations.


Water utilities typically use flow and pressure data from night flows as good indicators of leakage events and to identify which particular areas might be experiencing leaks. As their approach moves into real-time data analysis, companies have the potential to locate and remedy the larger leaks before the customer even becomes aware of them.


Network visualisation


Data analytics provides water utilities with the tools to run a range of statistical models which can be used for a variety of purposes in water network management. The software provides visualisation of the network that was not previously available and is making easily digestible information available on dashboards and in apps.


40 drain TRADER | June 2020 | www.draintraderltd.com


As well as traditional flow and pressure logging, utilities are carrying out more acoustic logging of noise data, which helps to locate the leaks as well as work out the rate of water loss. New analytical techniques like machine learning and artificial neural networks (ANN) are being used to process data in smarter ways.


These technologies use programmed algorithms that evolve and improve as they process more and more data over time. That intelligence is then used to make increasingly accurate predictions.


ANNs can tell quite quickly if something unusual is happening in the water network and reduce the need for analysts to review it. It is by bringing the full suite of technologies together – measuring pressure, flow, acoustics and anything else relevant and available – that operators can get a broader view of potential water loss and risk to supply continuity.


Permanent logging


The UK has seen a significant shift to permanent installations of acoustic logging technologies where information is being acquired proactively. In other parts of the world, more traditional flow and logging equipment is still being installed and there is increased sectorisation of the network to locate leakage down to a specific area.


Acoustic logging technology is not new, ground microphones and hydrophones have been used for some time. Traditionally this has been on a lift-and- shift basis – the network operator identifies an area


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84