STEAM STE R I L I SAT ION
Driving improvement in steam sterilisation
Angelo Giambrone explores how decontamination leads and authorising engineers in healthcare facilities can drive improvements in steam quality to deliver reliable and consistent sterilisation of reusable medical devices and touches on what the future may hold for the sterile services department in a decarbonising world.
Healthcare facilities are committed to delivering high-quality care in a safe environment where patients should be protected from avoidable harm.1
One such
area in healthcare that is paramount in protecting patients is the decontamination function provided by the Central Sterile Services Department (CSSD). Effective sterilisation is a crucial element in the running of a hospital, ensuring operations can be safely performed and that patient wellbeing is maintained. Vulnerable hospital patients, often with compromised immune systems, are unfortunately at increased risk of infection. One report in the British Medical Journal stated that between 2016 and 2017,2
there were
an estimated 653,000 healthcare-associated infections (HCAIs) among the 13.8 million adult inpatients in NHS general and teaching hospitals in England, of which 22,800 patients died as a result of their infection. As such, HCAIs are closely monitored and this of course has been particularly
scrutinised in 2020 with the ongoing efforts to minimise the spread of COVID-19. The National Institute for Health and Care Excellence (NICE) reported in 20163
that
“the six most common types of healthcare- associated infections, which accounted for more than 80% of all healthcare-associated infections, were pneumonia and other respiratory infections (22.8%), urinary tract infections (17.2%), surgical site infections (15.7%), clinical sepsis (10.5%), gastrointestinal infections (8.8%) and bloodstream infections (7.3%)”. With respect to surgical site infections, there is guidance on the preparation of the surgical site, procedures during the operation and post-operation care of the wound. One critical area in minimising risk of surgical site infection is in the effective decontamination of surgical equipment, ensuring that the equipment used in surgery is sterilised to the standards required by the industry, to help deliver the best possible outcome for the patients. As a key infection control measure,
decontamination is an umbrella term used to describe the process of cleansing to remove contaminants such as micro-organisms, making equipment safe for reuse in operating theatres, clinics, A&E departments and wards. There are three levels of decontamination4 within the healthcare environment; the first line of defence is general cleaning, the second is disinfection and finally, the third is sterilisation for the removal of viable infectious agents including viruses and bacterial spores. Effective decontamination can be achieved by applying the appropriate actions at all stages of the decontamination life cycle process (Figure 1).
Figure 1: The decontamination life cycle. APRIL 2021
In this feature we will focus on the sterilisation element of the decontamination cycle. Steam provides the most reliable and efficient method of achieving effective sterilisation, which is why the healthcare industry standard for sterilisation is to use steam, delivered at a specific pressure and temperature. It is a simple, fast and safe way to decontaminate reusable medical devices such as surgical instruments. However, it is important to consider how the steam is produced and delivered to the sterilisers in order to ensure that the quality standards are met and to achieve a successful and repeatable outcome from every sterilisation cycle. The time taken for a cycle can depend on the steriliser and its contents. Another factor is the steam pressure. Steam temperature varies with pressure and Health Technical Memorandum (HTM) 01-01 Part C indicates how steriliser holding times vary with steam temperature, in order to achieve sterilisation. Optimising sterilisation cycle times of course has an impact on departmental efficiency, economy and most importantly, patient safety. Whatever steam pressure or cycle time is used, underpinning it all is the provision of high quality steam into the sterilisation process, to ensure the desired quality of the end product is reached.
WWW.CLINICALSERVICESJOURNAL.COM l 79
▲
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88