banknotes. The recovery of SARS- CoV-2 from the porous material (cotton cloth) at 20°C was much shorter with no viable virus surviving past 14 days. At 30°C infectious virus was recoverable for only seven days from stainless steel, money (polymer banknotes) and glass. It was recoverable for only three days from vinyl and cotton cloth.”

These results have far-reaching implications for many workplaces, as the average indoor working temperatures are generally set between 16°C and 24°C, as recommended by UNISON. These levels of ambient temperature contribute directly to the proliferation of SARS CoV-2 during the time between individual surface disinfections and touches.

Before the end of the first lockdown, the UK Government issued fourteen guides covering all types of workplaces from offices and fleets of vehicles to home visits. Theses guides are in-depth and comprehensive while catering for different settings. However, they all have one common part: Section 5 – cleaning the workplace/space/ objects – with the clear objective, “To keep the workplace clean and prevent transmission by touching contaminated surfaces.” The Government also advises the use of cleaning agents that are effective against “enveloped viruses”.

Can regular cleaning alone really prevent the transmission of SARS CoV-2 on high touch surfaces? In truth probably not, unless every surface is cleaned between every individual contact touch – which is just not realistic, practical, or economical.

This Government objective can however be met from another angle – the use of a permanent bond antimicrobial nano-coating. An example is a formulation made from a silicon dioxide (quartz) based solution, which bonds to surfaces, forming a nano-scale ‘glass like’ covering, to which a tried and tested antimicrobial active ingredient (ammonium chloride) has been added that forms a permanently bonded layer of ‘nano spikes’. TOMORROW’S FM | 27

Throughout the course of the working day, droplets and aerosols land on the surface and every touch leaves a contact or smear of infection. These may not always be SARS CoV-2, but, amongst others, it could be intestinal E.coli or Salmonella from the 67% of people who don’t wash their hands – or don’t wash them properly, after using the toilet.

The ‘nano spikes’ incorporated into the coating puncture the microbes’ cell wall and membrane, causing its demise and neutralising it on contact, thus preventing it from multiplying or being passed onto the next person to touch the surface. The bonus of the physical nature of the ‘kill’ is that it prevents microbes from mutating and becoming resistant to chemicals, helping to combat the rise in drug resistant microbes.

These antimicrobial nano- coatings have undergone extensive laboratory testing for efficacy on many well-known infections such as MRSA, E.Coli and Salmonella, but have recently undergone testing on enveloped viruses and in particular SARS CoV-2. On-going field Adenosine Triphosphate (ATP) hygiene testing evidences the nano coating’s antimicrobial effect on treated surfaces in-situ.

The benefit of using a nano-coating is the longevity of the surface bond and antimicrobial activity, both of which have been tested using ISO standards to demonstrate a minimum twelve-month active life span. The application of antimicrobial nano- coatings to schools, work areas and office is simple and straightforward, achieved using a two-part coating system that can be hand applied or by using mist spraying equipment.

Antimicrobial nano-coatings provide facility managers and end users with an ongoing backdrop of a constant microbial kill on surfaces. This actively contributes to the prevention of transmission of infection through hand-surface-hand contact on contaminated surfaces – 24 hours a day, 365 days of the year – with one easy to apply treatment. The practical and cost benefits from the reduction in upheaval for clients, staff/visitors from daily/weekly sanitising deep cleans, giving the ability to return to ‘normal’ cleaning regimes are highly tangible.

Liquid Guard Antimicrobial nano coating is available through Nano- Care UK.

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74