search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
44 May / June 2021


Molecular Characterization of Volatiles and Petrochemical Base Oils by Photo- Ionization GC×GC-TOF-MS. Analytical Chemistry, 2017.


7. A. Giri, M. Coutriade, A. Racaud, P.-H. Stefanuto, K. Okuda, J. Dane, R. B. Cody, J.-F. Focant. Compositional elucidation of heavy petroleum base oil by GC × GC-EI/PI/CI/FI-TOFMS. Journal of Mass Spectrometry, 2019, 54, 148.


8. H.-D. Beckey, Field Ionization Mass Spectrometry, Pergamon (Elsevier), Oxford, 1971.


Figure 6 (A) Summed EIC chromatograms from Figure 5 for comparison with (B) the EIC chromatogram for the common C16


H26 + fragment ion.


EIC chromatograms were created to identify isomers and homologues of other biomarker compounds including hopanes, norabietanes, bisnorhopanes, and the diamondoids adamantane, iceane, and diamantane (Cn


H2n-8 ). Figure 7 shows the summed EIC chromatograms for the diamantanes in a crude oil sample. References


1. Z. Liu, J. B. Phillips. Comprehensive Two- Dimensional Gas Chromatography using an On-Column Thermal Modulator Interface. Journal of Chromatographic Science, 1991, 29, 227.


Figure 7. Summed EIC chromatograms for Cn exact mass +/- 0.01Da window.


Conclusions and Future Perspectives


Comprehensive two-dimensional gas chromatography combined with high- resolution time-of-flight mass spectrometry provides enhanced separation and specificity for the analysis of complex mixtures such as petrochemicals. Although electron ionisation produces mass spectra that can be searched against the mass spectral databases, the extensive fragmentation in EI mass spectra complicates the data interpretation. By reducing or eliminating fragmentation artifacts, field ionisation and photoionisation provide greater specificity for petroleum biomarker and type analysis. These ion sources are available with the newest JEOL time-of-flight mass analyser (JMS-T2000GC) with greatly enhanced mass resolving power and mass accuracy that is expected to provide even greater accuracy and specificity for these analyses.


H2n-8 series (n=14-20),


2. R. C. Y. Ong, P. J. Marriott. A Review of Basic Concepts in Comprehensive Two-Dimensional Gas Chromatography. Journal of Chromatographic Science, 2002, 40, 276.


3. H. J. Cortes, B. Winniford, J. Luong, M. Pursch. Comprehensive two dimensional gas chromatography review. Journal of Separation Science, 2009, 32, 883.


4. M. Ubukata, K. J. Jobst, E. J. Reiner, S. E. Reichenbach, Q. Tao, J. Hang, Z. Wu, A. J. Dane, R. B. Cody. Non-targeted analysis of electronics waste by comprehensive two-dimensional


gas chromatography combined with high-resolution mass spectrometry: Using accurate mass information and mass defect analysis to explore the data. Journal of Chromatography A, 2015, 1395, 152.


5. M. Ubukata, Y. Ueda. Biomarker Analysis in Petroleum Samples Using GC×GC- HRTOFMS with an Ion Source Combining Electron Ionization (EI) and Photo Ionization (PI). JEOL News, 2018, 53, 54.


6. A. Giri, M. Coutriade, A. Racaud, K. Okuda, J. Dane, R. B. Cody, J.-F. Focant.


11. F. P. Lossing, I. Tanaka. Photoionization as a Source of Ions for Mass Spectrometry. J. Chem. Phys., 1956, 25, 1031.


12. J. C. Traeger, in Encyclopedia of Spectroscopy and Spectrometry (Third Edition) (Eds.: J. C. Lindon, G. E. Tranter, D. W. Koppenaal), Academic Press, Oxford, 2017, pp. 650.


13. D. J. Butcher. Vacuum Ultraviolet Radiation for Single-Photoionization Mass Spectrometry: A Review. Microchemical Journal, 1999, 62, 354.


14. K. Qian, F. C. Wang. Compositional Analysis of Heavy Petroleum Distillates by Comprehensive Two-dimensional Gas Chromatography, Field Ionization and High-resolution Mass Spectrometry. Journal of The American Society for Mass Spectrometry, 2019, 30, 2785.


15. C. S. Hsu, C. C. Walters, G. H. Isaksen, M. E. Schaps, K. E. Peters, in Analytical Advances for Hydrocarbon Research (Ed.: C. S. Hsu), Springer US, Boston, MA, 2003, pp. 223.


16.Z. Wang, S. A. Stout, M. Fingas. Forensic Fingerprinting of Biomarkers for Oil Spill Characterization and Source Identification. Environmental Forensics, 2006, 7, 105.


17. N. G. S. Mogollón, P. S. Prata, F. Augusto. Determination of Biomarkers in Petroleum by Multidimensional Gas Chromatography: Fundamentals, Applications, and Future Perspectives. Chromatography Today, 2014, May/June, 3.


18. K. E. Peters, C. C. Walters, J. M. Moldowan, The Biomarker Guide: Volume 1: Biomarkers and Isotopes in the Environment and Human History, Vol. 1, 2 ed., Cambridge University Press, Cambridge, 2004.


9. N. M. M. Nibbering, in The Encyclopedia of Mass Spectrometry (Eds.: M. L. Gross, R. M. Caprioli), Elsevier, Boston, 2016, pp. 92.


10. L. Prókai, Field Desorption Mass Spectrometry, Marcel Dekker, Inc., New York and Basel, 1989.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60