29 586-595.
44. Ruiz, V.G.; Olives, A.I.; Martin, M.A. Core- shell particles lead the way to renewing high-performance liquid chromatography, Trends Anal. Chem., 2015, 64, 17-28.
45. Cabooter, D.; Broeckhoven, K.; Sterken, R.; Vanmessen, A.; Vandendael, I.; Nakanishi, K.; Deridder, S.; Desmet, G. Detailed characterization of the kinetic performance of first and second generation silica monolithic columns for reversed-phase chromatography separations, J. Chromatogr. A, 2014, 1325, 72-82.
46. Sklenarova, H.; Chocholous, P.; Koblova, P.; Zahalka, L.; Satinsky, D.; Matysova, L.; Solich, P. High-resolution monolithic columns – a new tool for effective and quick separation, Anal. Bioanal. Chem., 2013, 405, 2255-2263.
47. Hormann, K.; Mullner, T.; Bruns, S.; Holtzel, A.; Tallarek, U. Morphology and separation efficiency of a new generation of analytical silica monoliths, J. Chromatogr. A, 2012, 1222, 46-58.
48. Guiochon, G. Monolithic columns in high-performance liquid chromatography, J. Chromatogr. A, 2007, 1168, 101-168.
49. Deeb, S. E.; Schepers, U.; Watzig, H. Fast HPLC method for the determination of glimepiride, glibenclamide, and related substances using monolithic column and flow program, J. Sep. Sci. 2006, 29, 1571- 1577.
50. Badman, E. R.; Beardsley, R. L.; Liang, Z.; Bansal, S. Accelerating high quality bioanalytical LC/MS/MS assays using fused- core columns, J. Chromatogr. A, 2010, 878, 2307-2313.
51. Shaaban, H.; Gorecki, T. Fused core particles as an alternative to fully porous sub-2-µm particles in pharmaceutical analysis using coupled columns at elevated temperatures, Anal. Methods, 2012, 4, 2735- 2743.
52. Ahmad, I.A.H.; Soliven A.; Allen, R.C.; Filgueira, M.; Carr, P.W. Comparison of core-shell particles and sub-2µm fully porous particles for use as ultrafast second dimension columns in two-dimensional liquid chromatography, J. Chromatogr. A, 2015, 1386, 31-38.
53. McCalley, D. Instrumental Considerations for the effective operation of short, highly efficient fused-core columns. Investigation of performance at high flow rates and elevated temperatures, J. Chromatogr. A, 2010, 1217,
4561-4567.
54. Schuster, S.A.; Boyes, B.E.; Wagner, B.M.; Kirkland, J.J. Fast high performance liquid chromatography separations for proteomic applications using fused-core silica particles, J. Chromatogr. A, 2012, 1228, 232-241.
55. Rogeberg, M.; Wilson, S.R.; Malerod, H.; Lundanes, E.; Tanaka, N.; Greibrokk, T. High efficiency, high temperature separations on silica based monolithic columns, J. Chromatogr. A, 2011, 1218, 7281-7288.
56. Wu, J.T.; Zheng, H.; Deng, Y.; Unger, S.E. High speed liquid chromatography/tandem mass spectrometry using a monolithic column for high throughput bioanalysis, Rapid Commun. Mass Spectrom., 2001, 15, 1113-1119.
57. Deng, Y.; Wu, J.T.; Lloyd, T.L.; Chi, C.L.; Olah, T.V.; Unger, S.E. High speed gradient parallel liquid chromatography/tandem mass spectrometry with fully automated sample preparation for bioanalysis: 30 seconds per sample from plasma, Rapid Commun. Mass Spectrom., 2012, 16, 1116-1123.
58. Deng, Y., Zeng, H., Unger, S.E., Wu, J.T. Multiple-sprayer tandem mass spectrometry with parallel high flow extraction and parallel separation for high-throughput quantitation in biological fluids, Rapid Commun. Mass Spectrom., 2001, 15, 1634-1640.
59. Gonzales-Ruiz, V.; Olives, A.I.; Martin, M.A. Challenging core-shell stationary phases with the separation of closely related anti-cancer compounds: performance studies and application to drug quantitation in cell cultures with multi-well plate clean-up, J. Chromatogr. A, 2014, 1364, 83-95.
60. Sander, L.C.; Pursch, M.; Wise, S.A. Shape selectivity for constrained solutes in reversed-phase liquid chromatography, Anal. Chem. 1999, 71, 4821-4830.
61. Sander, L.C.; Wise, S.A. Subambient temperature modification of selectivity in reversed-phase liquid chromatography, Anal. Chem. 1989, 61, 1749-1754.
62. Sander, L.C.; Wise, S.A. Shape selectivity in reversed-phase liquid chromatography for the separation of planar and non-planar solutes, J. Chromatogr. A, 1993, 656, 335-351.
63. Rimmer, C.A.; Lippa, K.A.; Sander, L.C. Shape Selectivity in Reversed-Phase Liquid Chromatography, LC-GC NA., 2008, 26, 984-998.
64. Lippa, K.A.; Rimmer, C.A.; Sander, L.C. editors, Shape Selectivity in Reversed- Phase Liquid Chromatography, Advances in
Chromatography, CRC Press, 2007.
65. Shollenberger, D.; Cramer, H.; Bell, D.S. Evaluation of retention and selectivity using biphenyl stationary phases, LC-GC NA., 2017, 35, 360-365.
66. Zhou, S. N.; Reiner, E.J.; Marvin, C.H.; Helm, P.A.; Shen, L.; Brindle, I.D. Liquid chromatography/atmospheric pressure photoionization tandem mass spectrometry for analysis of dechloranes, Rapid Commun. Mass Spectrom., 2011, 25, 436-442.
67. Powell, M.; D’Arcy, M.B. Liquid phase separation of structurally-similar steroids using phenyl stationary phases, Anal. Methods, 2013, 5, 5014-5018.
68. Young, J.E.; Matyska, M.T.; Azad, A.K.; Yoc, S.E.; Pesek, J.J. Separation differences among phenyl hydride, UDC cholesterol and bidentate C8 stationary phases for stability indicating methods of tetracyclines, J. Liq. Chromatogr. Relat. Technol., 2013, 36, 926-942.
69. Pesek, J.J.; Matyska, M.T.; Dawson, G. B.; Wilsdorf, A.; Marc, P.; Padki, M. Cholesterol bonded phase as a separation medium in liquid chromatography: Evaluation of properties and applications, J. Chromatogr. A, 2003, 986, 253-262.
70. Bocian, S.; Matyska, M.; Pesek, J.; Buszewski, B. Study of the retention and selectivity of cholesterol bonded phases with different linkage spacers, J. Chromatogr. A, 2010, 1217, 6891-6897.
71. Bocian, S.; Soukup, J.; Matyska, M.; Pesek, J.; Jandera, P.; Buszewski, B. The influence of the organic modifier in hydro-organic mobile phase on separation selectivity of steroid hormones separation using cholesterol-bonded stationary phases, J. Chromatogr. A, 2012, 1245, 90-97.
72. Horvath, C.G.; Lipsky, S.R. Peak capacity in chromatography, Anal. Chem., 1967, 39, 1893-1893.
73. Bristow, P.A.; Knox, J.H. Standardization of test conditions for high performance liquid chromatography columns, Chromatographia, 1977, 10, 279-289.
74. Wang, X.; Barber, W.E.; Carr, P.W. A practical approach to maximizing peak capacity by using long columns packed with pellicular stationary phases for proteomic research J. Chromatogr. A, 2006, 1107, 139- 151.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60