search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
39 Characteristic compounds identified in the pyrolysed filter sample.


Figure 4a and b: PE Triplet Series.


2D contour plot of a pyrolysed filter sample (London, UK) is depicted in Figure 3. 12000 features could be identified with a S/N value of 25. In this complex mixture, PE can be easily and reliably identified as an existing polymer based on its characteristic triplet series (Figures 4a and 4b). Other characteristic polymer pyrolysis products and polymerisation additives


Figure 5a and b: PVC Pyrolysis Products and Additives. could also be detected (Figures 5a and 5b).


Using GCxGC, a novel 2-step thermal desorption/pyrolysis approach was evaluated. In this regard, 2 measurements of a filter sample (collected in Augsburg, Germany) spiked with a standard of PS were performed. During the first step, thermal desorption conditions were applied in order


1st step Thermal desorption: 40 °C


250 °C (2 °C/sec)


to introduce the complete volatile and semi volatile compounds to the GC column for a comprehensive analysis without causing degradation to any possible polymers present. Typical patterns for highly complex environmental samples, which contain different chemical species, such as furans, benzols, or 2-ring aromatics, were recognisable (Figure 6a). Furthermore, typical degradation products or additives of polymers, such as α-methylstyrene or diethyl phthalate, could also be identified. Such compounds could not be distinguished from products formed during pyrolysis in a one-step approach. During the second step, pyrolysis conditions were applied to the same, already desorbed filter sample. Characteristic degradation products of PS were found (Figure 6b) and can therefore clearly be assigned to the MP.


Conclusions and Outlook


2nd step Pyrolysis: 40 °C 550 °C (60 °C/sec)


In a first step toward detecting environmental microplastic pollution using two-dimensional gas chromatography-mass spectrometry (GCxGC-MS), the applicability of a LECO Pegasus®


BT 4D system,


Figure 6: GC×GC-TOFMS contour plots for an ambient aerosol sample which was analyzed by applying two-step desorption.


a) Step 1: Gradual thermal desorption under controlled heating conditions. b) Step 2: Pyrolysis.


equipped with an Optic-4 insert, was tested by analysing common polymer standards. In order to obtain comparable data, the instrument was operated in 1D GC mode. A comparison with literature data shows a very good data consistency.


The 2D analysis of the environmental aerosol samples shows a high number and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60