7
was tested over a range of 30 (minimum temperature settable in the autosampler) and 55°C, and the extraction time was set between 10 and 30 min.
In fingerprinting and profiling studies, the goal is to maximise the overall response, maximising the number of peaks detected and their intensities. The response surface (Figure 4) was built considering the cumulative area intensity of all the peaks detected. It is evident from Figure 4 that the maximum is reached at a milder temperature and shorter time using Vac- HS-SPME, while using regular-HS-SPME, a maximum is not reached even after 55°C and 30 min of extraction. The total number of peaks detected increased from ~150 to ~180 using Vac-HS-SPME.
the diffusivity through the liquid phase facilitating mass transfer at the interface.
The use of Vac-HS-SPME for untargeted studies of olive oil can importantly increase the level of information obtainable and the effectiveness of cross-sample comparison applying pattern recognition algorithms, allowing more effective markers identification for quality and authenticity studies.
Acknowledgements
This article is based upon work from COST Action CA 16215, supported by COST (European Cooperation in Science and Technology,
http://www.cost.eu). SM and GP thank Supelco for providing the fibres.
Compliance with ethical standards
Note: The authors declare no competing financial interest.
Ethical Approval: The authors have declared that no ethical issues exist.
References
1. É.A. Souza-Silva, N. Reyes-Garcés, G.A. Gómez-Ríos, E. Boyaci, B. Bojko, J. Pawliszyn, A critical review of the state of the art of solid-phase microextraction of complex matrices III. Bioanalytical and clinical applications, TrAC - Trends Anal. Chem. 71 (2015) 249–264. doi:10.1016/j. trac.2015.04.017.
2. W. Filipiak, B. Bojko, SPME in clinical, pharmaceutical, and biotechnological research – How far are we from daily practice?, TrAC - Trends Anal. Chem. 115 (2019) 203–213. doi:10.1016/j. trac.2019.02.029.
Figure 4: Surface responses are obtaining applying the two-variable inscribed rotatable CCD. A) Regular HS-SPME and B) Vac-HS-SPME. Temeprature range: 30-55°C; time range: 10-30 min.
3. Q.H. Zhang, L. Di Zhou, H. Chen, C.Z. Wang, Z.N. Xia, C.S. Yuan, Solid-phase microextraction technology for in vitro and in vivo metabolite analysis, TrAC - Trends Anal. Chem. 80 (2016) 57–65. doi:10.1016/j. trac.2016.02.017.
Conclusions
The advantages of using Vac-HS-SPME compared to regular-HS-SPME were shown and discussed. Heating the sample (43°C compared to 30°C) further enhanced the benefit of vacuum. Moreover, for viscous liquid samples, the temperature remained an important parameter since it increased
4. É.A. Souza-Silva, E. Gionfriddo, J. Pawliszyn, A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis, TrAC - Trends Anal. Chem. 71 (2015) 236–248. doi:10.1016/
j.trac.2015.04.018.
5. M. Llompart, M. Celeiro, C. García-Jares, T. Dagnac, Environmental applications of solid-phase microextraction, TrAC - Trends Anal. Chem. 112 (2019) 1–12. doi:10.1016/j. trac.2018.12.020.
6. N. Lorenzo-Parodi, W. Kaziur, N. Stojanović, M.A. Jochmann, T.C. Schmidt,
Solventless microextraction techniques for water analysis, TrAC - Trends Anal. Chem. 113 (2019) 321–331. doi:10.1016/j. trac.2018.11.013.
7. G. Hanrahan, K. Lu, Application of factorial and response surface methodology in modern experimental design and optimization, Crit. Rev. Anal. Chem. 36 (2006) 141–151. doi:10.1080/10408340600969478.
8. C.H. Xu, G.S. Chen, Z.H. Xiong, Y.X. Fan, X.C. Wang, Y. Liu, Applications of solid- phase microextraction in food analysis, TrAC - Trends Anal. Chem. 80 (2016) 12–29. doi:10.1016/
j.trac.2016.02.022.
9. P.Q. Tranchida, M. Maimone, G. Purcaro, P. Dugo, L. Mondello, The penetration of green sample-preparation techniques in comprehensive two-dimensional gas chromatography, TrAC - Trends Anal. Chem. 71 (2015) 74–84. doi:10.1016/j. trac.2015.03.011.
10. Z. Zhang, J. Pawliszyn, Headspace Solid-Phase Microextraction, Anal. Chem. 65 (1993) 1843–1852. doi:10.1021/ac00062a008.
11. E. Psillakis, Vacuum-assisted headspace solid-phase microextraction: A tutorial review, Anal. Chim. Acta. 986 (2017) 12–24. doi:10.1016/
j.aca.2017.06.033.
12. S. Mascrez, E. Psillakis, G. Purcaro, A multifaceted investigation on the effect of vacuum on the headspace solid-phase microextraction of extra-virgin olive oil, Anal. Chim. Acta. (2019). doi:10.1016/j. aca.2019.12.053.
13. A. Zhakupbekova, N. Baimatova, B. Kenessov, A critical review of vacuum- assisted headspace solid-phase microextraction for environmental analysis, Trends Environ. Anal. Chem. 22 (2019) e00065. doi:10.1016/j.teac.2019.e00065.
14. E. Psillakis, E. Yiantzi, L. Sanchez- Prado, N. Kalogerakis, Vacuum-assisted headspace solid phase microextraction: Improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions, Anal. Chim. Acta. 742 (2012) 30–36. doi:10.1016/j. aca.2012.01.019.
15. J. Koziel, M. Jia, J. Pawliszyn, Air sampling with porous solid-phase microextraction fibers, Anal. Chem. 72 (2000) 5178–86.
16. T. Górecki, J. Pawliszyn, Effect of Sample Volume on Quantitative Analysis by Solid- phase MicroextractionPart 1. Theoretical Considerations, Analyst. 122 (1997) 1079–1086. doi:10.1039/a701303e.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56