search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
38 February / March 2020


Development of a Cannabinoid Analysis


within a Regulated Environment


by Raymond Wong, Angela Jein Shimadzu UK Limited, Milton Keynes, U.K.


Interest in the therapeutic properties of organic compounds from cannabis such as cannabinoids has exploded in recent years. This has led to a significant increase in the number of products hitting the market focussed on what the industry terms nutraceuticals. These nutraceuticals are food or fortified food products that are purported to supplement the diet but, also potentially assist in treating or preventing disease. Examples include cannabidiol (CBD) fortified oils which must adhere to the lower legal limits of tetrahydrocannabinol (THC) [1]. Since nutraceuticals are not as rigorously tested and regulated to the extent of pharmaceutical drugs, in recent times there has been a strong movement within the nutraceutical industry towards improving standards and regulation. On 1st November 2018, the United Kingdom legalised medicinal cannabis, allowing the pharmaceutical industry to provide medicinal cannabis extracts approved through clinical trials under pharmaceutical regulations. Unlike the common nutraceuticals these medicinal cannabis extracts can include THC. This article describes the development of a robust analytical method for the analysis of eleven primary cannabinoids within an FDA 21 CFR Part 11 ready chromatography data system (CDS), supporting laboratories seeking to follow the FDA fundamental elements of electronic data quality: ALCOA+.


Introduction


Cannabis contains a number of chemical alkaloids known as cannabinoids. Primary cannabinoids of interest to most laboratories are tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN). In extracts from the plant, THC and CBD exist as the native acid forms, tetrahydrocannabinolic acid (THCA) and cannabinolic acid (CBDA). These gradually decarboxylate to THC and CBD through exposure to heat and light [2].


Cannabis may be analysed for different purposes, the most common of which is the potency, characterised by the quantitation of THC, CBD and CBN. The Analytical Monograph Cannabis Flos (Version 7.1, November 28 2014) released by the Dutch Office for Medicinal Cannabis describes a methodology for analysis of cannabinoids for release testing of Cannabis Flos (flowers / granulated) [3]. Furthermore, based on this monograph method the typical solvents used to extract cannabinoids are typically ‘strong’ organic solvents due to their lipophilicity, however; early eluting compounds can suffer from poor peak asymmetry using this monograph method due to the strength of the extraction solvent. This can be solved by using the co-solvent injection mechanism previously published [4]. This article highlights the use of a high- resolution UHPLC method to determine the potency of cannabis extracts with the


Figure 1: HPLC chromatographic analyses of 11 common cannabinoids. Chromatographic conditions are included in section Method Details.


Shimadzu Cannabis Analyser for Potency within an FDA 21 CFR Part 11 ready CDS environment and the use of intelligent Peak Deconvolution Analysis (i-PDeA) for challenging separations.


Cannabinoid methods carried out on HPLC instruments analysed all 11 common cannabinoids in under 8 minutes with a low- pressure maximum of 193 bar / 2,800 psi as depicted in Figure 1. [5]


Figure 2: Quantification of partially co-eluting Δ9-THC and Δ8-THC using i-PDeA.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56