search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
16 February / March 2020


Online Solid Phase Extraction and LC/MS Analysis of Thyroid Hormones in Human Serum


by Olga I. Shimelis, Candace Price, MilliporeSigma, Bellefonte, PA , USA olga.shimelis@milliporesigma.com; candace.price@milliporesigma.com


Thyroid hormones play critical roles in the regulation of biological processes, such as growth, metabolism, protein synthesis, and brain development. Specifically, both 3,3’,5,5’-tetraiodo-L-thyronine (thyroxine or T4) and 3,3’,5-triiodo-L-thyronine (T3), are essential for development and maintenance of normal physiological functions [1]. For a clinical laboratory, measurements of total T4 and total T3, along with estimates of free T4 (FT4) and free T3 (FT3), are important for the diagnosis and monitoring of thyroid diseases. Most clinical laboratories measure thyroid hormones using immunoassays. The immunoassay-based methods offer a relatively rapid, high patient sample throughput that lends itself to automation, but are significantly compromised by problems with assay interference and are complicated by changes in protein levels that alter the free hormone availability [1,2]. These drawbacks lead to inaccuracies of immunoassays and can lead to false high or low results [3].


Liquid chromatography mass spectrometry (LC/MS) has been reported [1-3] to offer superior specificity and speed over the immunoassays for determination of thyroid hormones in biological matrices such as serum and tissues. Nevertheless, the reported sample preparation procedures, typically liquid-liquid extraction followed by solid phase extraction (SPE), involve multiple time-consuming steps, and are less compatible with automation [3,4]. The


Chemical structures of the thyroid analytes


present work demonstrates successful on- line SPE with LC/MS for rapid determination of T4, T3, and 3,3′,5′-triiodo-L-thyronine (rT3) from biological matrices. The method development process included the use of 2 on-line SPE cartridge chemistries: C8 and RP-Amide. The serum samples underwent protein precipitation procedure to release the protein-bound thyroid hormones. The capture of analytes on the on-line SPE cartridges was confirmed by washing the


cartridges directly into analytical HPLC column using higher concentrations of organic solvent and tandem mass spectrometry detection.


Experimental:


Materials: SupelTMGenie C8 and RP-Amide (RPA) on-line cartridges (2 cm length x 4.0 mm i.d.), human serum (MilliporeSigma Cat. H-1388), protein crashing solvent: methanol with 1% (w/v) ammonium formate.


Figure 1: The chemical structures of the thyroid analytes. Note T3 and rT3 are isobaric.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56