32 February / March 2020
Method Development and Validation of Simultaneous Determination of Assay of Salmeterol Xinafoate and Fluticasone Propionate in Dry Powder Inhalers
by Serkan Acar1* 1
, Devrim Çelik Sakızcı1 , Emine Yılmaz1
Arven Pharmaceutical, Research and Development Department, 34590 Silivri, Istanbul, Turkey *
serkanacar@arvenilac.com.tr
A new HPLC method has been developed as an alternative to existing pharmacopeia methods for the assay determination of Salmeterol and Fluticasone propionate Inhalation Powder. The chromatographic separation utilises an isocratic elution in which mobile phase consisting of a buffer potassium dihydrogen phosphate (pH 3.0) and acetonitrile at 1.5 mL min−1
flow rate, 40ºC column temperature, 25ºC tray temperature
and gradient wavelength UV detection between 210-239 nm. A stainless steel column (15cm x 4.6mm, 5µm) packed with octadecylsilyl silica gel (Hypersil BDS) was employed.
Being validated in accordance with ICH guidelines, this method provides a safer and easier solution for assay determination of Salmeterol and Fluticasone propionate compared to pharmacopeia methods. The major benefits of the new method are; using a wavelength gradient for the quantitation of Salmeterol and Fluticasone propionate which give max. UV absorptions at different wavelengths, using a simple buffer solution that is prepared simply and which is non-toxic to the analyst.
1. Introduction
Being developed as a potent β2- adrenoceptor agonist and having the long acting bronchodilator profile, Salmeterol Xinofotate (SX) is used to open the airways in the lungs to make breathing easier in the treatment of asthma and chronic obstructive pulmonary disease known as COPD [1].
Largely used as an inhaled corticosteroid (ICS), Fluticasone propionate (FP) is commonly used in combination with Salmeterol Xinofoate [2], forming an inhalation product consisting of a long-acting beta2-adrenoceptor agonist (LABA) plus a corticosteroid [3]. It is proven that the twice daily therapy of combining Salmeterol and Fluticasone Propionate is more effective than the monotherapy of inhaled corticosteroids alone particularly in terms of enhancing lung function and reducing asthma symptoms. Moreover, as mentioned by McKeage and Keam, the combination of Salmeterol and Fluticasone Propionate ensures a powerful, strongly tolerated choice in the maintenance and treatment of asthma [3].
Cyplos 50/500 mcg Powder for Inhalation (Arven, Turkey) was developed as a fixed dose combination of Salmeterol and Fluticasone Propionate. For the assay determination of Salmeterol and Fluticasone Propionate Inhalation Powder, there are several assay methods provided by several authorities.
The US pharmacopeia (USP) published a pre-dispensed monograph for Fluticasone Propionate and Salmeterol inhalation powder. According to this monograph the assay method shows the separation of FP and SX with an octadecylsilyl bonded silica gel 5cm x 4.6mm, 3.5µm column with an isocratic elution of 0.01 M sodium dodecyl sulfate, methanol and acetonitrile at a flow rate of 2.0 mL/min. The column temperature is 40ºC. Fluticasone Propionate UV is detected at 239 nm wavelength and Salmeterol detected using Fluorescence (FLR) detection with an excitation wavelength of 225 nm and a resulting emission of 305 nm [4].
The monograph for Fluticasone Propionate
and Salmeterol Inhalation Powder published by British Pharmacopeia (BP) states that FP and SX are separated by a method using a flow rate of 1.5 mL/min, with a stainless steel column (20 cm x 4.6 mm) packed with 5 µm octadecylsilyl silica gel at 40ºC. The method proposes a detection wavelength of 239 nm and a fluorescence detection with an excitation wavelength of 225 nm and an emission wavelength of 305 nm. The proposed mobile phase contains acetonitrile, methanol and a solution containing 0.2M ammonium acetate and 0.5% w/v tetrabutylammonium hydrogen sulphate in water [5].
The assay method provided by USP 41 employs Sodium Dodecyl Sulphate, a surfactant in the mobile phase preparation that is known to be flammable, harmful if swallowed, causes skin irritation and serious eye damage plus many more hazards [6]. Moreover, in the USP method and the method provided by the BP, FLR detector is used, which while being quite sensitive to any contamination caused by working conditions. Any contamination detected by
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56