search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
45


improved using another new stationary phase GreenSep NP-9. The chromatogram with enhanced separation between CBD and THC is shown in Figure 8. Using GreenSep NP-9 provides separation factor to effectively remove THC from a complex mixture of cannabinoids.


Isolation of CBD, THCV and THC


Figure 5: Separation of CBD, THC and CBN on GreenSep III using 2% ethanol.


The cannabinoid THCV is another cannabinoid that has some medicinal interest. However it is difficult to separate THCV from THC and CBD by SFC. However, the SFC isolation of THCV from CBD and THC was achieved on GreenSep NP-12. A chromatogram of this separation is shown in Figure 9.


Conclusion Figure 6: Cannabinoid mixture chromatographed on GreenSep NP-II using 10% ethanol.


Several new stationary phases have been developed (GreenSep NP-III, GreenSep NP-II, GreenSep NP-9 and GreenSep NP-12) optimised for the preparative SFC separation and isolation of cannabinoids. GreenSep NP-III is optimised for the rapid separation of CDBA and THCA. GreenSep NP-II is useful for THC and THCA removal with a quick cycle time. GreenSep NP-9 is optimised to deliver the maximum separation alpha between CBD and THC and is best for the removal of THC. GreenSep NP-12 is designed to separate CBD, THCV and THC with maximum alpha value. The recommended use for each of these stationary phases are shown in Table 1. Loading studies are currently being conducted to define preparative loading and output for these cannabinoid isolates. These stationary phases separate the desired components and are designed to deliver the desired separation at the lowest level of liquid ethanol modifier possible. Ethanol minimisation is important since it is more expensive than CO2 difficult to remove than CO2


and more . In addition, these Figure 7: Separation of CBD, THC and CBN on GreenSep III using 2% ethanol. Isolation of CBD and THC


During our investigation we discovered that GreenSep NP-III could be used for the SFC preparative separation of CBD and THC as shown in Figure 5 where both CBD and THC are eluted with only 2% ethanol.


The separation of CDB and THC on GreenSep NP-III provided the motivation to develop other new products specifically designed for optimised SFC preparative separation of cannabinoids. A chromatogram showing the separation of a cannabinoids mixture chromatographed on a GreenSep NP-II is shown in Figure 6 where


THC can easily be removed from a cannabis extract and CBDA and THCA are still eluted in less than 15 minutes.


In some cases, it would be desirable to isolate full spectrum CBD without THC. Full spectrum CBD contains cannabinoids without THC and THCA. This full spectrum CBD may have additional therapeutic benefits when compared to pure CBD. Figure 7 shows the separation of CBD and THC. Based upon this chromatography THC and CBN can be removed from an extract to produce full spectrum CBD.


The separation of CBD from THC was further


stationary phases are robust, cost effective and designed for preparative SFC separations.


Table 1: Recommended Cannabis Component Isolation for the New GreenSep NP Stationary Phases.


GreenSep Column Recommended Use NP-II


NP-III NP-9 NP-12


Rapid isolation of CBDA and THCA


Optimal THC removal to produce full spectrum CBD


Optimal separation of THCV


THC and THCA removal with a quick cycle time


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56