COMPREHENSIVE SUMMARY OF QUANTIFICATION CAPABILITIES OF METHANE EMISSIONS USING AIRBORNE HYPERSPECTRAL CAMERA
Methane is a powerful greenhouse gas and several organizations in multiple countries are taking signifi cant steps toward sharply reducing emissions from the oil and gas sector [1] [2]. According to EPA (United States Environmental Protection Agency), methane accounts for 10% of total greenhouse gas emissions whereas carbon dioxide amounts to 80% [3]. However, the fact that methane has a global warming potential that is 28–36 times that of carbon dioxide over a 100-year period (IPCC’s Fourth Assessment Report [4]) is a strong motivation for reducing emissions. A large portion of the methane emissions come from the energy sector, more precisely from natural gas and petroleum industry. The oil and natural gas industry includes a wide range of operations and equipment, from wells to natural gas gathering lines and processing facilities, to storage tanks, and transmission and distribution pipelines, all of which can leak methane into the atmosphere.
Recent work from Duren et al. and Frankenberg et al. indicate that a small number of point sources (10%) are responsible for most (60%) of the methane emissions [5] [6]. These sources are called super-emitters. Several technologies exist to detect those emissions. Airborne longwave infrared hyperspectral imager like the Hyper-Cam Airborne Mini is one of them. This technology was evaluated and its capabilities demonstrated in multiple methane-controlled releases. In this work we want to present a comprehensive summary of the detection and quantifi cation results obtained in recent campaigns.
EXPERIMENTAL METHODS AND MATERIALS
The Methane Airborne Detection Solution is based on FTIR (Fourier Transform Infrared) hyperspectral imaging technology. The camera named Hyper-Cam Airborne Mini can be installed in drones, aircrafts and helicopters (Figure 1). It provides a high spatial resolution infrared image. Its 320×256-pixel cooled infrared detector also ensures excellent 2D image quality. The most recent version of the system provides an instantaneous fi eld of view (iFOV) of 750 μrad per pixel. This, for example, translates to a footprint of 0.23 m and 0.3 m for height above ground level (AGL) of 305 m (1000 ft) and 396 m (1300 ft) respectively.
The system comes complete with an optical head composed of the hyperspectral camera, a GPS and inertial measurement units to record the position and orientation of the sensor along with a processing unit, and powerful software suite for commands, controls, and data processing. The hyperspectral imager offers a user selectable spectral resolution down to 0.5 cm-1
. For the
results presented in this paper, spectral resolutions used ranged between 4 to 11 cm-1
. These spectral resolutions settings offer
a great compromise between acquisition frame rate and signal to noise ratio for methane detection. In addition, the system delivers very high-resolution visible imagery with 12 megapixels embedded camera. This system is capable of surveying roughly 13 square kilometers (5 square miles) of oil and gas infrastructure per hour making it a very effi cient system.
Results presented in this paper come from 4 different airborne data collection campaigns at various locations. Included in this list are the campaign over Total’s TADI plateforme in Lacq, France in 2018 [7] and the one performed with ASMAN Technology
PIN Annual Buyers’ Guide 2023
Figure 2: Example of a detection report produced by the system in real time. The methane plume is displayed in pink over the infrared image.
Figure 3: Example of a georeferenced infrared map overlayed onto Google Earth imagery. The insertion shows a close-up view of the region where the methane was detected.
Figure 1: Example of integration of the Hyper-Cam Airborne Mini: (left) in an ARLA 600 from Asman Technology; (right) in a Bell 206 helicopter.
and GRTgas over the Jonzac-Neules aerodrome in 2021 [8]. For confi dentiality reasons, the 2 other locations cannot be disclosed. For all these tests, methane was release from high pressure canisters and measured with quality fl ow meter. For the vast majority of the campaigns, wind speed was measured locally with a weather station deployed near the methane release point. For all cases, the fl ight altitudes varied between 305 m and 1200 m.
RESULTS AND DISCUSSION
For each of the detections, a detection report is produced in graphical and table format. The graphical report fi le contains the detection image as it appears in the software used when taking measurements, consisting of the broadband infrared image overlaid with the color-coded detection results. Figure 2 shows an example of a methane gas plume detected during the campaign
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76