1462
12. Dolley S. Big data’s role in precision public health. Front Public Health 2018;6:68.
13. Kruse CS, Goswamy R, Raval Y,Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform 2016;4:e38.
14. Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Transl Sci 2014;7:342–346.
15. Gray EA, Thorpe JH. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J Comp Eff Res 2015;4:61–74.
16. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Devel 1959;3:210–229.
17. Cox D. The regression analysis of binary sequences. J Roy Stat Soc 1958:215–242.
18. Goodfellow I, Bengio Y, Courville A. Deep Learning, 1st ed. Cambridge, MA: MIT Press; 2016.
19. Breiman L. Random forests. Machine Learn 2001;45:5–32. 20. Oh J, Makar M, Fusco C, et al. A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infect Control Hosp Epidemiol 2018;39:425–433.
21. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. JAm Med Inform Assoc 2017;24:1052–1061.
22. Escobar GJ, Baker JM, Kipnis P, et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol 2017;38:1196–1203.
23. Sherman E, Gurm H, Balis U, Owens S, Wiens J. Leveraging clinical time- series data for prediction: a cautionary tale. AMIA Annu Symp Proc 2017;2017:1571–1580.
24. Neugebauer R, Schmittdiel JA, van der Laan MJ. A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators. Int J Biostat 2016;12:131–155.
25. Lippert C, Casale FP, Rakitsch B, Stegle O. LIMIX: Genetic analysis of multiple traits. bioRxiv 2014.
26. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. Fast linear mixed models for genome-wide association studies. Nature Methods 2011;8:833.
27. Li L, Rakitsch B, Borgwardt K. CcSVM: Correcting support vector machines for confounding factors in biological data classification. Bioinformatics 2011;27:i342–348.
28. Beeler C, Dbeibo L, Kelley K, et al. Assessing patient risk of central line- associated bacteremia via machine learning. Am J Infect Control 2018;46:986–991.
29. Parreco JP, Hidalgo AE, Badilla AD, Ilyas O, Rattan R. Predicting central line-associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;45:156–162.
30. Savin I, Ershova K, Kurdyumova N, et al. Healthcare-associated ventriculitis and meningitis in a neuro-ICU: incidence and risk factors selected by machine learning approach. J Crit Care 2018;45:95–104.
Jan A. Roth et al
31. Cook JA, Collins GS. The rise of big clinical databases. Br J Surg 2015; 102:e93–e101.
32. Benchimol EI, Smeeth L, Guttmann A, et al. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med 2015;12:e1001885.
33. Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 2016;23:1007–1015.
34. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017;318:517–518.
35. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317–1318.
36. Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using “real- world” data. JAMA 2017;318:703–704.
37. Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-driven definition of big data in healthcare. Biomed Res Int 2015;2015:639021.
38. Allen C, Tsou M-H, Aslam A, Nagel A, Gawron J-M. Applying GIS and machine learning methods to twitter data for multiscale surveillance of influenza. PLoS One 2016;11:e0157734.
39. Ehrentraut C, Ekholm M, Tanushi H, Tiedemann J, Dalianis H. Detecting hospital-acquired infections: a document classification approach using support vector machines and gradient tree boosting. Health Informatics J 2018;24:24–42.
40. Kuo P-J, Wu S-C, Chien P-C, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 2018; 9:13768–13782.
41. Ferdoash A. Letter to the editor: Predicting central-line–associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;46:162.
42. Sanger PC, van Ramshorst GH, Mercan E, et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surg 2016;223:259–270.
43. Gómez-Vallejo HJ, Uriel-Latorre B, Sande-Meijide M, et al. A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Syst 2016;84:104–116.
44. Lu FS, Hou S, Baltrusaitis K, et al. Accurate influenza monitoring and forecasting using novel internet data streams: a case study in the Boston metropolis. JMIR Public Health Surveill 2018;4:e4.
45. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 2015; 11:e1004513.
46. Sohn S, Larson DW, Habermann EB, Naessens JM, Alabbad JY, Liu H. Detection of clinically important colorectal surgical site infection using bayesian network. J Surg Res 2017;209:168–173.
47. Pak TR, Chacko KI, O’Donnell T, et al. Estimating local costs associated with Clostridium difficile infection using machine learning and electronic medical records. Infect Control Hosp Epidemiol 2017;38:1478–1486.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124