search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
1462


12. Dolley S. Big data’s role in precision public health. Front Public Health 2018;6:68.


13. Kruse CS, Goswamy R, Raval Y,Marawi S. Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform 2016;4:e38.


14. Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Transl Sci 2014;7:342–346.


15. Gray EA, Thorpe JH. Comparative effectiveness research and big data: balancing potential with legal and ethical considerations. J Comp Eff Res 2015;4:61–74.


16. Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Devel 1959;3:210–229.


17. Cox D. The regression analysis of binary sequences. J Roy Stat Soc 1958:215–242.


18. Goodfellow I, Bengio Y, Courville A. Deep Learning, 1st ed. Cambridge, MA: MIT Press; 2016.


19. Breiman L. Random forests. Machine Learn 2001;45:5–32. 20. Oh J, Makar M, Fusco C, et al. A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers. Infect Control Hosp Epidemiol 2018;39:425–433.


21. Davis SE, Lasko TA, Chen G, Siew ED, Matheny ME. Calibration drift in regression and machine learning models for acute kidney injury. JAm Med Inform Assoc 2017;24:1052–1061.


22. Escobar GJ, Baker JM, Kipnis P, et al. Prediction of recurrent Clostridium difficile infection using comprehensive electronic medical records in an integrated healthcare delivery system. Infect Control Hosp Epidemiol 2017;38:1196–1203.


23. Sherman E, Gurm H, Balis U, Owens S, Wiens J. Leveraging clinical time- series data for prediction: a cautionary tale. AMIA Annu Symp Proc 2017;2017:1571–1580.


24. Neugebauer R, Schmittdiel JA, van der Laan MJ. A case study of the impact of data-adaptive versus model-based estimation of the propensity scores on causal inferences from three inverse probability weighting estimators. Int J Biostat 2016;12:131–155.


25. Lippert C, Casale FP, Rakitsch B, Stegle O. LIMIX: Genetic analysis of multiple traits. bioRxiv 2014.


26. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D. Fast linear mixed models for genome-wide association studies. Nature Methods 2011;8:833.


27. Li L, Rakitsch B, Borgwardt K. CcSVM: Correcting support vector machines for confounding factors in biological data classification. Bioinformatics 2011;27:i342–348.


28. Beeler C, Dbeibo L, Kelley K, et al. Assessing patient risk of central line- associated bacteremia via machine learning. Am J Infect Control 2018;46:986–991.


29. Parreco JP, Hidalgo AE, Badilla AD, Ilyas O, Rattan R. Predicting central line-associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;45:156–162.


30. Savin I, Ershova K, Kurdyumova N, et al. Healthcare-associated ventriculitis and meningitis in a neuro-ICU: incidence and risk factors selected by machine learning approach. J Crit Care 2018;45:95–104.


Jan A. Roth et al


31. Cook JA, Collins GS. The rise of big clinical databases. Br J Surg 2015; 102:e93–e101.


32. Benchimol EI, Smeeth L, Guttmann A, et al. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement. PLoS Med 2015;12:e1001885.


33. Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to improve case detection: a systematic review. J Am Med Inform Assoc 2016;23:1007–1015.


34. Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA 2017;318:517–518.


35. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA 2018;319:1317–1318.


36. Jarow JP, LaVange L, Woodcock J. Multidimensional evidence generation and FDA regulatory decision making: defining and using “real- world” data. JAMA 2017;318:703–704.


37. Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-driven definition of big data in healthcare. Biomed Res Int 2015;2015:639021.


38. Allen C, Tsou M-H, Aslam A, Nagel A, Gawron J-M. Applying GIS and machine learning methods to twitter data for multiscale surveillance of influenza. PLoS One 2016;11:e0157734.


39. Ehrentraut C, Ekholm M, Tanushi H, Tiedemann J, Dalianis H. Detecting hospital-acquired infections: a document classification approach using support vector machines and gradient tree boosting. Health Informatics J 2018;24:24–42.


40. Kuo P-J, Wu S-C, Chien P-C, et al. Artificial neural network approach to predict surgical site infection after free-flap reconstruction in patients receiving surgery for head and neck cancer. Oncotarget 2018; 9:13768–13782.


41. Ferdoash A. Letter to the editor: Predicting central-line–associated bloodstream infections and mortality using supervised machine learning. J Crit Care 2018;46:162.


42. Sanger PC, van Ramshorst GH, Mercan E, et al. A prognostic model of surgical site infection using daily clinical wound assessment. J Am Coll Surg 2016;223:259–270.


43. Gómez-Vallejo HJ, Uriel-Latorre B, Sande-Meijide M, et al. A case-based reasoning system for aiding detection and classification of nosocomial infections. Decision Support Syst 2016;84:104–116.


44. Lu FS, Hou S, Baltrusaitis K, et al. Accurate influenza monitoring and forecasting using novel internet data streams: a case study in the Boston metropolis. JMIR Public Health Surveill 2018;4:e4.


45. Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput Biol 2015; 11:e1004513.


46. Sohn S, Larson DW, Habermann EB, Naessens JM, Alabbad JY, Liu H. Detection of clinically important colorectal surgical site infection using bayesian network. J Surg Res 2017;209:168–173.


47. Pak TR, Chacko KI, O’Donnell T, et al. Estimating local costs associated with Clostridium difficile infection using machine learning and electronic medical records. Infect Control Hosp Epidemiol 2017;38:1478–1486.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124