search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Infection Control & Hospital Epidemiology


Implementation of a carbapenem prescribing algorithm at a community hospital


Stacy E. Shimata PharmD1, Christine M. Antczak PharmD1, Phillip S. Yu MD1 and Kavita K. Trivedi MD2 1Sutter Tracy Community Hospital, Tracy, California and 2Trivedi Consults, Berkeley, California


To the Editor—Sutter Tracy Community Hospital (STCH) is a nonprofit 79-bed acute-care hospital located in Northern Cali- fornia serving more than 100,000 people in the Central Valley region. In 2015, the STCH Antimicrobial Stewardship Program (ASP) established a multidisciplinary committee under the lea- dership of a consultant ASP physician and an ASP certified pharmacist to coordinate antibiotic stewardship efforts and to support the implementation of new initiatives. Carbapenems have broad-spectrum activity against gram-


positive and gram-negative bacteria, including organisms pro- ducing extended spectrum β-lactamases (ESBLs). Unrestricted use and overuse of these agents leads to limited susceptibility profiles and reduced treatment options. Carbapenem-resistant Enter- obacteriaceae (CRE) bacteria have been on the rise and have been deemed an urgent threat level by the Centers for Disease Control and Prevention (CDC). More than 9,000 healthcare-associated infections are caused by CRE bacteria each year, with a reported 40–50% mortality rate for invasive infections.1,2 An additional serious threat is multidrug-resistant Pseudomonas aeruginosa, which accounts for 13% of all hospital-acquired P. aeruginosa infections. These organisms often exhibit high rates of cross resistance with all β-lactam antibiotics.1,3 Promoting the appropriate use of antibiotics by decreasing


inappropriate prescribing is a key element of antibiotic stewardship to reduce the emergence of resistance.4 Studies have shown that unrestricted use of carbapenems have been linked to high rates of inappropriate use, thereby offering opportunities for the selection of narrower-spectrum agents or therapy de-escalation. Pharmacy-driven stewardship efforts have been successful with carbapenem de-escalation, but data demonstrating the direct effect of antibiotic stewardship interventions on improving their susceptibility profiles are lacking.5–8 The STCH Antimicrobial Stewardship Committee noted


imipenem-cilastatin as the antipseudomonal β-lactam with the lowest susceptibility to P. aeruginosa (88%) and a concerning decreasing trend from previous years (92% in 2013). A Carbape- nem Prescribing Algorithm (Fig. 1) was developed as guidance to prescribers to promote the appropriate use of carbapenems. Pharmacists utilized prospective audit and feedback for new orders that failed to meet the algorithm’s use criteria and recommended alternative therapy. The objective of this stewardship initiative was to decrease overall carbapenem use by improving prescribing habits and promoting the appropriate use of these antibiotics. Buy- in was obtained from hospital physicians at the Department of Medicine committee meeting prior to implementation.


Author for correspondence: Stacy E. Shimata, PharmD, Sutter Tracy Community Hospital, 1420 N Tracy Blvd, Tracy, CA 95376. Email: shimats@sutterhealth.org


Cite this article: Shimata SE, et al. (2018). Implementation of a carbapenem prescribing algorithm at a community hospital. Infection Control & Hospital Epidemiology 2018, 39, 1503–1504. doi: 10.1017/ice.2018.256


© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. Methods


A quasi-experimental study was conducted utilizing a retrospective medication use evaluation (MUE). Three months of pre-intervention baseline data were collected from January to March 2015. The Carbapenem Prescribing Algorithm was implemented in December 2016 with education completed with prescribers and clinical pharmacists. In addition, 3 post-intervention follow-up periods of data were collected: immediate post-intervention (January–March 2016), 6 months post-intervention (July–September 2016), and 1 year post-intervention (January–March 2017). The primary end- points were carbapenem days of therapy adjusted per 1,000 patient days (DOT) and percent of patients who met algorithmuse criteria. Secondary endpoints included antibiogram susceptibility and cost savings using pharmacy purchasing data.


Results


A 3-fold decrease in DOT was observed from baseline (131.8) to immediately post-intervention (40.2) and remained low (42.9) 6 months post-intervention. Although DOT increased to 64.5 by 1 year post-intervention, it remained ~50% lower than the baseline level. At baseline, only 20% of patients met algorithm use criteria, which increased to 35% immediately post-intervention. At 6 months and 1 year post-intervention, the percentage of patients who met algorithm use criteria increased to 70% and 79% respectively, nearly 3- to 4-fold compared to the baseline. The overall reduction in carbapenem use improved susceptibility to P. aeruginosa. After implementation of the Carbapenem Prescrib- ing Algorithm, the hospital antibiogram susceptibility increased to 89% in 2015 and to 92% in 2016, a return to the 2013 percentage. Additionally, using 2015 as baseline, a $75,000 pharmacy cost savings was calculated for 2016 and $65,000 cost savings for 2017, which was attributed to the direct impact of implementing the Carbapenem Prescribing Algorithm.


Discussion


The implementation of a pharmacy-driven Carbapenem Pre- scribing Algorithm at a small community hospital improved prescribing habits and the appropriate use of these agents. This intervention also led to a 3-fold reduction in overall carbapenem use, improvement of local antibiogram susceptibilities, and cost savings for the hospital. Success with the algorithm continued 6 months and 1 year post-intervention. Although carbapenem utilization increased 1 year post-intervention, 79% of this use was deemed appropriate based on algorithm criteria. This study had some limitations. It was conducted at a small community hospital, so our results may not be generalizable to larger academic and trauma centers with varying rates of


1503


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124