search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TECHNICAL


How total cost of ownership breaks down


Toro’s web-based asset management system, MyTurf Pro, makes recording the balancing of investment, component costs and residual value easy


the equipment’s actual operating hours. Cost per hour is useful and easy to determine but doesn’t reflect differences in machinery productivity or between different sizes, types or prices of equipment. A cost per acre, hectare or identified site can be preferable, by simply dividing the established hourly costs by area cut per hour. Of course, in some finer turf applications, productivity will have to be balanced with specific presentation requirements and standards.


Robust record keeping


By robust record keeping, it is possible to confirm the balancing of investment, component costs and residual value. It’s simple enough to do using technology - Toro’s web-based asset management system, MyTurf Pro for example, which gives turf managers the capability to monitor fleet health, order parts and schedule service activities, helping to improve staff efficiency, lengthen the life of equipment and reduce overall maintenance costs. Without that, you can record the data on a spreadsheet - if you can measure, you can manage! As mentioned, it’s important to buy machinery that’s proved to be reliable and built to last. Look for features and benefits that will enable your team to do more with that machine. Does the machine allow for easier servicing - providing ease of access, simplicity and visibility? Can quality components be evidenced to aid maintenance and limit downtime? Will it allow you to go longer between servicing? Does it have features that will make it more cost effective to run? Enhanced fuel efficiency for example, or hybrid technology. We can see and already understand that the lowest cost of ownership is achieved through the purchase of productive, good quality equipment, supported by a robust preventative maintenance and repair regime which protects the machines’ performance and integrity. In addition, it is accepted that a


well-trained and attentive operating team will also impact on running costs by catching things early, so dealing with them at the most cost-effective point.


But, by focusing and drilling on each component of contributory cost and recording that data, it’s possible to further drive the return on investment and control unexpected costs. This will put the equipment manager in charge of the powerful data and in a strong position to achieve the best residual values when the product is replaced, and keep a handle on maintenance costs by replacing at the optimum moment for change.


Replacement life


In considering the replacement life of modern turf equipment and the maintenance costs and requirements associated with that equipment, an interesting theoretical comparison can be made between the operating characteristics of a professional mowing machine engine and that fitted to a modern car, a comparison that pops up from a price perspective from time to time.


A typical turf machinery engine runs at a governed speed of 2800rpm, whilst a modern car running at 2800rpm can easily equal a travelling speed of 80mph or even significantly more. Therefore, theoretically, every 100 hours of full throttle operation on a turf machine engine could be considered to equal 8000 car miles (100 hours x 80mph).


A car engine operates at about a 20 percent duty cycle (full power only 20 percent of the running time on average), trucks operate at about 50 percent duty cycle. Turf machinery engines, on the other hand, run at about 70 percent duty cycle, so the turf engine duty cycle is up to three to four times as demanding as a car. Compared to a car, the turf engine and its oil has done almost four times the work! That’s equivalent to 24,000-32,000 car


Using data collected from full maintenance contracts, customer fuel and labour data, the following TCO breakdown was found for a five year old grounds machine with 2000 hours accumulated


miles based on the theoretical 100 hours. That could mean that considering the increased load on the engine, a typical 450 hour season for the turf equipment is equivalent notionally to around 100,000 miles.


Hypothetical and theoretical comparisons can be entertaining but, in these times, it’s more important than ever for the owner and operator of commercial turf equipment to ensure their pound delivers. This can be honed by taking the emotion out of the decision and relying more on gathered and projected data in order to make an informed choice.


Now is not the time to be governed by what you’ve always bought. The industry must work together, sharing its knowledge, to understand the issues customers will face in these new times and meet the challenge to lower the total cost of ownership.


Reesink is available to explain how TCO can be applied to your fleet or talk through other ownership or operating problems to help you solve them. There are always flexible finance deals available with deferred start dates, subsidised rates or that can be aligned to peak income months to help manage cashflow. It only takes a conversation. Make contact online at reesinkturfcare.co.uk, by phone on 01480 226800 or by email at info@reesinkturfcare.co.uk.


PC June/July 2020 139


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156