search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
TECHNICAL Maintenance


Maintenance recording should include all repair and servicing costs, labour, fluids, parts and environmental disposal. A robust, preventative maintenance regime will reduce and/or prevent unnecessary, costly and unexpected breakdowns. A proactive cleaning and greasing regime will protect the residual value of the investment and reduce overall service costs while prompt operator action to indicators such as noise, smell and vibration changes can save money through early intervention. Clean air and oil are the fundamentals to long engine life and reliability, in a similar way to cleanliness, good quality oil and controlled operating temperatures are key to hydraulic system reliability.


It is surprising how the areas of maintenance that generate service time or bills are relatively easily avoided, such as lack of greasing, contaminated fuel or oil and blocked radiators or oil coolers.


Downtime


Arguably the most important consideration. There’s nothing more frustrating than a machine out of action after all. Downtime costs money and time is money. Downtime is basically a record of the cost of lost operator hours, lost income (if applicable) and replacement equipment hire costs. When recorded accurately, it helps to


support an ‘instinct’ that equipment is unreliable and ‘costing’ money. It can also support a considered decision to change equipment before its planned time. There is a direct correlation with maintenance practices - preventative maintenance reduces downtime. An ageing or poorly maintained equipment fleet is likely to generate unwelcome repair costs and spiralling downtime, creating additional difficulty in controlling maintenance budgets.


Fuel


Fuel consumption is a significant component which can be up to 15 percent of the TCO. It’s determined by engine efficiency and the mower’s horsepower demand. Horsepower demand is dictated by the equipment’s design and the mowing conditions. The height, density and moisture content of grass and mowing frequency must all be taken into consideration and different heights of cut will require different amounts of fuel. In simple terms, the heavier or more extreme the conditions the more fuel used. Plus, fuel consumption is dependent on the type of mower - cylinder mowers, for example, will generally require 50 percent less horsepower of rotaries, per inch of cut. Air-cooled engines will consume 15-30 percent more fuel than liquid cooled engines, per horsepower per hour, while liquid cooled diesel engines can be 20 percent more fuel efficient than petrol


alternatives.


New and emerging power technologies can make a big impact. Hybrid and alternative energy technologies can save a further 20-25 percent over diesel. The Toro eTriFlex 3360 hybrid greens mower provides up to 20 percent fuel savings over comparable triplex mowers, and the Toro eTriFlex 3370 all-electric eliminates the need for a liquid fuel source altogether. Maintenance will also come into play and affect the amount of fuel used. Dull, blunt or poorly adjusted cutting blades will increase horsepower demand and fuel consumption, as will items like blocked hydraulic oil coolers.


Labour


Labour is the largest cost input when you take into consideration the hourly cost of labour, pay, pension, other social costs and training investments. The key is to ensure the operators are well trained on their equipment, comfortable and find it easy and intuitive to use. Factors that contribute to productivity, which is the key return on your team investment. Where mowing is concerned, productivity drives down the per hour or per acre/hectare costs, making labour more efficient.


In assessing total application costs, such as mowing, over the life, it’s possible to determine a ‘per hour’ cost. By recording all the TCO cost areas and dividing these by


A typical wide area five-unit cylinder mower, such as a Toro Reelmaster 5610-D, would have an engine size of approximately 43hp. If the engine were governed at a maximum engine speed of 3000rpm, in 100 hours of operation time the engine would have approximately consumed over 5.5 million litres of air and completed around 18 million crankshaft revolutions


138 PC June/July 2020


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156