search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Technical 0O 90O 180O 270O 360O (a) Single‐phase sine wave consisting of 360O Phase A Phase B Phase C 0O 120O 240O 360O


One of the greatest benefits of a diffused air system is that it neither uses any moving parts nor electricity in the water and, for these reasons, it’s one of the most popular aeration devices for large ponds and lakes that are at least 4.5m deep


(b) Three‐phase sine wave: each sine wave is 120O Figure 1: single-phase vs. three-phase power


creating circulation and de‐stratifying the pond, but they also replenish the oxygen supply throughout the water, and this allows for aerobic bacteria to rid the pond of noxious gases such as hydrogen sulfide and ammonia. Moreover, on the surface of the lake, the bubbles create a smooth rippling effect which deflects sunlight from reaching the pond bottom, thus deterring algae growth.


As with any type of aerator, efficiency depends on a few factors. In this case, the most influential are the size of the bubbles being dispersed and the depth of lake, which should be 4.5m deep or greater.


Bubble size


As a general rule of thumb, researchers agree that the smaller the bubble, the more effective the system. This is primarily due to the fact that smaller bubbles tend to stay in the water longer, creating a greater residual effect and spreading across a greater surface area of the water while rising to the surface. On the other hand, larger bubbles tend to rise to the surface quicker and, as opposed


to a smaller bubble, leave less time for oxygen to dissolve in the water. The motion of bubbles to the pond surface has the capacity to move an enormous amount of water, estimated between 5000‐8000 pounds per hour. Water circulation will increase as the depth increases, which means the greater the depth of the pond or lake, the better the water will be mixed and aerated. Scientists have determined that the peak efficiency depth is 15ft and studies indicate that, for every three foot decrease in depth, the system's relative efficiencies drop by about 50 percent.


Proper placement of the diffuser is also highly relevant to the effectiveness of aeration, however this matter is very site‐ specific. Since most ponds have varying depths and many are designed with what are called ‘dead spots’, it’s sensible to have a professional examine the site to determine where to place the diffuser so it will be both efficient and effective.


One of the greatest benefits of a diffused air system is that it neither uses any moving


Reg Varney, international sales manager at Otterbine


SPPS - World Class Ground Care


 Ultra low ground pressure  


 


echneat PC JUNE/JULY 2018 I 123


parts nor electricity in the water and, for these reasons, it’s one of the most popular aeration devices for large ponds and lakes that are at least 4.5m deep. So, as the temperature rises, there’s no need to despair; there’s plenty that can be done.


Otterbine’s sole UK distributor, Reesink Turfcare, can be contacted via info@reesinkturfcare.co.uk


out of phase with the next ”


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156