This page contains a Flash digital edition of a book.
WHAT’S HOT the analyst


This lack of knowledge is acting as a brake on take up of many new data management solution offerings. But the adoption of new solutions, whether related to big data projects or to meet other business needs does not mean the end of most established storage platforms nor the end of tried and trusted database management solutions


data to be analysed may utilise feeds from both structured and unstructured sources, but the key point is that the value of information to be mined may not be found in rich seams, but rather needs to be sifted from very large volumes of data.


To analyse these large volumes of data, possibly taken from multiple sources, a number of information management technologies may be employed. It is worthwhile noting that very few, if any of the new data management technologies coming to market today and that have surfaced over the past few years are targeted solely at the big data space. Indeed, almost all data and information management solutions are likely to be utilised in big data projects as well as other, more ‘mainstream’ business uses.


In this context, the figure below is interesting, revealing as it does both current usage levels of a variety of such tools and platforms along with expectations for changes in usage levels expected to occur in the next three years. It should be noted that the self-selecting nature of web surveys makes it likely that both the usage levels of ‘new solutions’ as well as projections for their future usage are likely to be over-represented as people interested in the area being surveyed are more likely to take part.


As can be seen, apart from legacy databases and file systems there is an expectation that already well-established information management technologies such as relational database management systems will continue to enjoy growth in usage in the coming years. These will increasingly be complemented by less well-established, but long available solutions such as in memory database systems, WORM databases and OLAP multi-dimensional databases, which are expected to expand considerably from their smaller foundations.


The more specialist platforms that are now frequently associated with ‘big data’, but which are by no means exclusively utilised in this context, are starting from much lower installed bases. Of these, a range of scale-out storage solutions enjoys the strongest adoption so far, but these are still clearly in their infancy in enterprise use, never mind in big data solutions. Stream processing, distributed indexing and distributed analytics engines are only just starting to be rolled out.


But like their well-established information management solutions, the expectation is that all such systems will enjoy wider usage in the coming years. It can also be argued that should the business value of ‘big data’ solutions garner wider recognition, that that take up of the various information management systems could expand even more rapidly, especially as the generation of data as a whole shows no signs of abating.


14 www.dcsuk.info I February 2012


What is clear is that neither ‘big data’ itself nor the use of any new information management or storage technologies are likely to mean an end to the use of established data management solutions. If anything, the reality is just the opposite. The study also shows that the knowledge levels amongst IT professionals as a whole of many new storage and information management systems today is still very low, especially of the newer technologies.


This lack of knowledge is acting as a brake on take up of many new data management solution offerings. But the adoption of new solutions, whether related to big data projects or to meet other business needs does not mean the end of most established storage platforms nor the end of tried and trusted database management solutions.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52