Automation
BenchBot Robot has a radial reach and can inte- grate with up to 10 devices. BenchBot worksta- tions are easily scalable and can be reconfigured using the one touch teach button on the BenchBot. Agilent has been focusing on developing out-of- the-box solutions for sample preparation includ- ing optimised protocols. Next Generation Sequencing (NGS) sample prep has been one of the most rapidly growing sample preparation applications for Agilent desktop automation. Agilent has a comprehensive reagent and automa- tion solution for NGS and more than 40 cus- tomers worldwide standardising NGS applica- tions on the Bravo Liquid Handling Platform. Two scalable configurations are available to meet the needs of high throughput NGS labs. The NGS Bravo is outfitted with heating, cooling, shaking and magnetic separation accessories to process 960 libraries or 192 exomes per work week. The BenchCel NGS Workstation is the next level of NGS automation and by adding the Labware MiniHub for labware storage and the BenchCel 4R for microplate handling you can achieve the highest level of walkaway time (Figure 11).
The BioRAPTR FRD from Beckman Coulter (
www.beckman.com) is a non-contact reagent dispenser capable of dispensing independent vol- umes into each well, from up to eight different reagents at a time. Per well dispense volumes range from 100nL to 60mL, and plate formats can include 96 to 1536 wells. It has recently used the BioRAPTR to initiate the differentiation of embryonic stem cells by adapting the ‘hanging drop’ method of embryoid body (EB) formation into a microplate format. The stem cells were safely and evenly distributed across a 384-well plate with the BioRAPTR, resulting in a single embryoid body per well. This method improved EB consistency and also enabled a design of experiment (DOE) to optimise the differentiation of stem cells into cardiomyocytes. The ability of the BioRAPTR to dispense different volumes of each reagent into different wells allowed Beckman Coulter to test numerous combinations of pro-cardiomyocytic compounds. In addition, it has used its Automated Assay Optimisation (AAO) for BioRAPTR software to convert the factorial mixture conditions into well dispense volumes for each reagent, greatly simplifying this complex task. These optimisation experiments resulted in a seven-fold increase in cardiomyocyte yield. This work demonstrates the type of elabo- rate experiments that can be quickly and easily automated using the BioRAPTR FRD (Figure 12).
Drug Discovery World Winter 2011/12
Figure 10. Breakdown of 2011 capex purchasing on small-scale benchtop automation
Automation applied externally to an instrument 13%
Automation that links multiple instruments 14%
automation platforms 40%
Generic ‘open’
Other 16%
© HTStec 2011
Dedicated or ‘closed’ automation platforms 17%
Figure 11: Agilent BenchBot workstation for NGS
Figure 12: Beckman Coulter’s BioRAPTR FRD™ microfludic workstation 31
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80